

USSR

YUSHKOV, V. I. et al., Khimiya i Fizika Nizketemperaturney Plasmy, Moscow University Press, 1971, pp 62-64

voltage from the load resistors is sent through capacitors C to the loops of oscilloscope 7. Preliminary analysis of materials obtained by this method shows that the proposed plasmatron design should be suitable for heating various gaseous and powdered materials. Two figures, bibliography of four titles.

3/3

Miscellaneous

USSR

VDC 669.71.004.2

YUSHKOV, V. I.

"Control Operation Experience in Nonferrous Metallurgy"

Bezopasnost' truda v prom-sti (Labor Safety in Industry), 1971, No 3, pp 28-29 (from RZh-Metallurgiya, No 7, Jul 71, Abstract No 7G186)

Translation: The operating experience of the administration of the Lower Volga Okrug of Gosgortekhnadzor [the State Committee of the Council of Ministers for Supervision of Industrial Safety and for Mining Inspection] of the USSR at the Volgograd Aluminum Plant with respect to monitoring and control in the electrolysis and powder metallurgy shops and the nitrogen blowing room is presented.

1/1

шс 541.8:547.831:547.261/262

POPCY, V. A., YISHKOVA, T. K., BOLAVINA, I. G., CHERKASOV, N. KH., and KHARLAMPOVICH, G. D.

"Study of the Solubility of Monosubstituted Quinoline, Isoquinoline, Quinaldine, and Lepidine Phosphates in Ethanol and Methanol of Different Concentrations"

Leningrad, Zhurnal Prikladnoy Khimii, Vol 44, No 11, Nov 71, pp 2589-2591

Abstract: Solubility of monosubstituted quinoline, isoquinoline, quinaldine, and lepidine phosphates in aqueous-alcoholic mixtures of ethanol and methanol increases with with temperature increase and with a drop in the concentration of alcohols. In the 0-10° temperature range the phosphates can be arranged in the following order of decreasing solubility: lepidine phosphate isoquinoline phosphate quinaldine phosphate. In the 30-50° range the order is: isoquinoline phosphate quinaldine phosphate lepidine phosphate quinaldine phosphate. These differences in their solubility may be used to obtain pure products.

1/1

- 69 -

Acc. Nr: 1/0038032

Ref. Code: UR 0056

PRIMARY SOURCE: Zhurnal Eksperimental'noy i Teoreticheskoy

Fiziki, 1970, Vol 58, Nr 1, pp 88-96

INVESTIGATION OF THE INSTABILITY OF A PLASMA IN A MIRROR TRAP

Kanayev, B. I.; Yushmanov, Ye. Ye.

The ion-cyclotron instability observed in the HP-5 installation differs in many respects from instabilities of the same type encountered in experiments with other mirror traps. This implicates a principally different nature of this instability. In the present work the most characteristic feature which is considered is the wave structure of the unstable oscillations; in particular an attempt is made to answer the question whether the oscillations are transverse of possess $k_{\parallel}=0$. The method employed for this purpose is based on a determination of orientation of external magnetic fields of the wave and their phasing relative to the electric potential wave. For $k_{\parallel}=0$ a characteristic feature is the presence of a specific effect related to longitudinal nonuniformity of the plasma cluster. The results are in accordance with those which one would expect for transverse oscillations.

The transverse character of the oscillation indicates that instability in IIP-5 does

1/2

REEL/FRAME 19731073

19

AP0038032

not refer to the Harris type as in case of mirror traps with external injection of neutral particles. Apparently one must also reject the explanation of instability predicted earlier as a result of build-up of transverse oscillations by the drift mechanism or as a result of the nonmaxwellian nature of the distribution function since the observed value of the parameter $k\rho_i$ is too small for this. The most probable seems to be the explanation proposed recently by Kadomtsev and Pogutse according to which the phenomena observed are negative mass instabilities.

1/2

19731074

UDC: 681.3

YUSHMANOV, Yu. I.

"Third-Generation Computer Software"

Tr. N.-i. i proyektn. in-ta to vnedreniyu vychisl. tekhn. v nar. kh-vo (Works of the Scientific Research and Design Institute on Introducing Computer Technology Into the National Economy), 1970, vyp. 5, pp 3-11 (from RZh-Kibernetika, No 11, Nov 71, Abstract No 117784)

Translation: The characteristics of digital computers are briefly presented by generations characterizing the degree of their development. The software make-up of digital computers is given as well as the principles of construction of operational systems, and the functions and make-up of these systems. It is concluded that there is a tendency at the present time toward simplification of the structure of technical devices by increasing software. Predictions are made on software development in the future. V. Mikheyev.

1/1

- 36 -

USSR

UDC 531.01

YUSIM, G. V.

"On the Problem of Optimum Setting of a Gyroscope to the Meridian During Run-Up of the Gyromotors"

Tr. Ryazan. radiotekhn. in-ta (Works of the Ryazan Radio Engineering Institute), 1970, vyp. 24, pp 34-38 (from RZh-Mekhanika, No 10, Oct 71, Abstract No 10A173)

Translation The author considers the problem of control synthesis for the purpose of minimizing the time of setting a gyrocompass to the meridian. The investigated equations of motion have variable coefficients. The problem is solved by using Pontryagin's principle of the maximum. Since a linear combination of two monotonic functions may have more than two zeros, there is some doubt as to the author's statement on the number of reversals in optimum control being no more than two. Consideration is also given to the problem of determining the minimum possible limitation on control for which the time of desping of the gyroscope is no greater than a predetermined time. A. M. Formal'skiy.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203720003-2"

UDC 666,113.621'82'46'28,535.34-15

VARSHAL, B. G., YUSIN, L. M., and KNYAZHER, G. B., State Institute of Glass

"Effect of Heat Treatment on the Optical Properties of Titanium-Containing Aluminosilicate Glasses"

Moscow, Neorganicheskiye Materialy, Vol 9, No 12, 1973, pp 2202-2205

Abstract: The addition of traces of TiO₂ to the system SiO₂-Al₂O₃-CaO-MgO in the form of a glass causes the absorption edge to shift nonlinearly with the TiO₂ concentration. The glasses may be divided into these groups based on the % TiO₂: 1) a homogeneous group, 0 - 3% TiO₂: 2) a heterogeneous group distinctly opalescent and having a coarse structure, 4 - 8%; and 3) a heterogeneous fine-grained group which darkens on low temperature heat treatment, 9 - 20% TiO₂. The spectra in the range 300-1500 millimicrons are shown for members of the 2⁰ and 3⁰ groups for heat treatment at temperatures of 650 to 950°C. In general, the absorption increases with increasing temperature of treatment and % TiO₂. Group 3 exhibited the greatest influence; group 2 less; and group 1 was eusentially not changed. The maximum absorption, dependent on the glass structure, 1/1

1/2 012 UNCLASSIFIED PROCESSING DATE--160CT70
TITLE--INTENSIFICATION OF THE ION EXCHANGE PURIFICATION OF GLYCEROL WATER
SOLUTIONS -U-

AUTHOR-(04)-TUYCHYEV, I.S., RIZAYEV, N.U., YUSIPOV, M.M., INAGAMOV, A.

COUNTRY OF INFO--USSR

SOURCE--IZV. VYSSH. UCHEB. ZAVED., PISHCH. TEKHNOL. 1970, (1), 74-7

DATE PUBLISHED----70

SUBJECT AREAS -- MECH., IND., CIVIL AND MARINE ENGR

TOPIC TAGS -- NATER PURIFICATION, ION EXCHANGE, GLYCERINE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1994/0424

STEP NO--UR/0322/70/000/001/0074/0077

CIRC ACCESSION NO--ATOL14704

-----UNGLASSIFIED

UNCLASSIFIED

PROCESSING DATE--16OCT70

CIRC ACCESSION NO--ATOLL4704

ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE DYNAMICS OF THE ION EXCHANGE
PURIFICATION OF GLYCEROL HATER SOLNS. IN THE PSEUDOLLOUSFACTION LAYER OF
THE IONITE WAS INVESTIGATED. THE SOLNS. USED HAD A GLYCERIN CONTENT OF
TIPERCENT. CA PRIME POSITIVE POSITIVE AND MG PRIME POSITIVE POSITIVE
IONS AT 0.98 MG-EQUIV-L., FREE FATTY AND MINERAL ACIDS AT 3.28
MG-EQUIV-L. THE SORPTION PROCESS WAS INVESTIGATED IN BOTH CYLINDRICAL
AND CONICAL COLUMNS. RESULTS SHOWED THE CONICAL ONES WITH SMALL ANGLE
OF CONICITY TO BE THE MOST EFFICIENT. FACILITY: TASHKENT.

POLITEKH. INST., TASHKENT, USSR.

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

PROCESSING DATE--11SEP70

TITLE--INTERACTION AND DISTRIBUTION OF IMPURITIES DURING THE GROWTH OF

STLICON STUDIED BY USING TUNNEL P-N JUNCTIONS -U-AUTHOR--SAYDOV, M.S., YUSOPOVA, M.K.

COUNTRY OF INFO--USSR

1/3

SOURCE-FIZ. TEKH. POLUPROV. 1970, 4(2), 252-5

DATE PUBLISHED ---- 70

SUBJECT AREAS--PHYSICS, ELECTRONICS AND ELECTRICAL ENGR.

TOPIC TAGS--SOLID STATE PHYSICS, SILICON FILM, PN JUNCTION, SEMICONDUCTOR IMPURITY, TUNNEL DIDDE, TUNNEL CURRENT

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1988/0287

STEP ND--UR/0449/70/004/002/0252/0255

CIRC ACCESSION NO--APO105359

UNCLASSIFIED

028 UNCLASSIFIED PROCESSING DATE--11SEPTO CIRC ACCESSION NO--APO105359 ABSTRACT/EXTRACT-- (U) GP-0- ABSTRACT. CHANGES IN THE NATURE AND CONCN. DE IMPURITIES IN THIN LAYERS OF SI GROWN FROM METALLIC SOLNS. WERE DETD. WITH THE AID OF THE VOLTAGE-CURRENT CHARACTERISTICS OF SI TUNNEL PN JUNCTIONS PREPD. WITH THE HELP OF VARIOUS ALLOYS. THUS, ST TUNNEL DIODES HAVING A RATIO OF THE EXTREMUM CUPRENTS OF I SUBMAX. - I SUBMIN. EQUALS 4-5 WERE PREPD. (AT 650DEGREES) FROM THE ALLDYS CU PLUS SN PLUS B, CU PLUS IN PLUS B, AND AU PLUS IN PLUS B, THESE BEING RICH IN AU OR CU. RESP. IN SPITE OF THE SATN. OF THE RECRYSTN. LAYER WITH AU OR CU. THESE DIDDES HAVE RELATIVELY SMALL EXCESS CURRENTS, WHICH CAN BE ATTRIBUTED TO THE SIGNIFICANT CHANGES IN THE DEEP LEVELS OF CU AND AU IN THE FORBIDDEN BANDS OF SI. ACCORDING TO THE PHASE DIAGRAMS FOR THE SYSTEMS CU-IN, CU-SN, AND AU-IN, INTERMETALLIC COMPDS. ARE FORMED, AND TAKING ACCOUNT OF THE FACT THAT IN AND SN ARE MORE SOLN. IN SOLID SI THAN ARE CU AND AU, IT IS REASONABLE TO CONCLUDE THAT AU OR CU CONTAINED IN THE RECRYSTN. LAYERS OF THESE DIDDES IS CHEM. BOUND TO THE IN AND SN. IN TUNNEL DIODES PREPD. AT 580-660DEGREES FROM AN ALLOY OF AL PLUS 2 WT. PERCENT B IN SI, ALL WITH THE SAME DEGREE OF DOPING BY AS OR P. THE D. OF THE DIRECT TUNNEL CURRENTS WAS GREATER THAN WITH DIDDES PREPD. FROM SI DOPED WITH AS. THIS IS ASSOCD. WITH THE FACT THAT P MARKEDLY INCREASES THE SOLY. OF B IN SOLID SI. A LARGE NO. OF PN JUNCTIONS ON DEGENERATE SI WERE PREPD. TO DET. THE EFFECT OF P AND CU ON THE SOLY. OF AL IN SI.

UNCLASSIFIED

) GE-CURRENT CHARACTER] IBTAINED AT 580DESREE LARGER REVERSE TUNNEI	S BY THE FUSIO	
TES THAT PEREDUCES TH		DIODES
		14 33210 JII
		· · · · ·
		·
	•	

uegp.

WG 546.799.94

لأسا

ZVARA, I., BELOV, V. Z., DOMANOV, V. P., KOROTKIN, YU, B., CHELHOKOV, L. P., SHALAYEVSKIY, H. R., SHCHEGOLEV, V. A., and YUSSCHRUL, H.

"Chemical Isolation of Kurchatovium"

Leningrad, Radiokhimiya, Vol 14, No 1, 1972, pp 119-122

Abstract: Darlier it was shown that during the immediation of $2h2_{\rm Fu}$ with $22_{\rm Re}$ ions with energies of 113-119 may (for z = 104), a short-lived, spentaniously fiscionable nuclide was detected whose chemical characteristics corresponded to the characteristics of chaharmium (Ku). The half lives of $259 {\rm Ku}$ and $260 {\rm Ku}$ are about 4.5 and 0.1 sec respectively. For these experiments the target film of plutonium acide (955 $^{242}{\rm Fu}$) with a density of 0.8 mg/cm² was irredicted with the ions with an energy of 119 may. This produced a reminum yield for the reaction $^{2h2}{\rm Fu}$ ($^{22}{\rm Ke}$, 5n) $^{259}{\rm Ku}$, gaseous mitrogen was passed over the surface of the target then mixed with small amounts of TiCl₂ and SoCl₂. The slightly volatile tetrachlorides of the redicactive products formed were separated on a chromatograph. A Ge-Li 77-radiation detector was used to arrabyce the gas at different points along the column. The isotopes $^{170}{\rm Hf}$, $^{171}{\rm Hf}$.

ZVARA, I., et al., Radiokhimiya, Vol 14, No 1, 1972, pp 119-122

and 246 Cf (the latter two being products of a transfer reaction). It was found that Na, Co, Ca, Sr, the lanthenides, Np, Pu, Ru, Rh, and Fd are adsorbed only at significantly higher temperatures than Mf (and also the ekchafnium Nu) whereas the chlorides of In, Sn, Nb, No, and To are adsorbed only at lower temperatures. Photographs of the expected area of Nu adsorption show tracks of fission products which must be those of the 250 Ku with a time 4.5

2/2

- 15 -

USSR

UDC 546.799.94

ZVARA, I., BELOV, V. Z., DOMANOV, V. P., KOROTKIN, Yu. S., CHELNOKOV, L. P., SHALAYEVSKIY, M. R., SHCHEGOLEV, V. A., and YUSSONNUA, M.

"Chemical Isolation of Kurchatovium"

Leningrad, Radiokhimiya, Vol 14, Vyp 1, 1972, pp 119-122

Abstract: Earlier it was shown that during the irradiation of 242pu with 22Ne ions with energies of 113-119 nev (for z = 104), a short-lived, spontaniously fissionable nuclide was detected whose chemical characteristics corresponded to the characteristics of ekahafnium (Ku). The half lives of 259Ku and 260Ku are about 4.5 and 0.1 sec respectively. For these experiments the target film of plutonium oxide (95% 242pu) with a density of 0.8 mg/cm² was irradiated with 22Ne ions with an energy of 119 mev. This produced a maximum yield for the reaction 242pu (22Ne, 5n) 259Ku. Gaseous nitrogen was passed over the surface of the target then mixed with small amounts of TiCl2 and SCCl2. The slightly volatile tetrachlorides of the radioactive products formed were separated on a chromatograph. A Ge-Li α-radiation detector was used to analyze the gas at different points along the column. The isotopes 170μf, 171μf, 44mSe (the latter the product of 22Ne reaction with the Al of the target base), 242Cm and 246Cf (the latter two being products of a transfer reaction). It was 1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203720003-2"

USSR

ZBARA, I., et al., Radiokhimiya, Vol 14, Vyp 1, 1972, pp 119-122

found that Na, Cs, Ca, Sr, the lanthanides, Np, Pu, Ru, Rh, and Pd are adsorbed only at significantly higher temperatures than Uf (and also the ekahafnium Ku) whereas the chlorides of In, Sn, Nb, Mo, and Tc are adsorbed only at lower temperatures. Photographs of the expected area of Ku adsorption show tracks of fission products which must be those of the 259 Ku with a t-1/2 = 4.5 sec.

2/2

- //0 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203720003-2"

USSR

UDC 535.65

PANOVA, I. N., and YUSTOVA, Ye. N.

"Problem of the Effect of Errors in Reproducing Color Addition Functions on the Readings of Photoelectric Comparators"

Tr. metrol. in-tov SSSR (Works of the USSR Metrological Institutes), No 114 (174), 1970, pp 159-166 (from RZh-Metrologiya i Izmeritel naya Tekhnika, No 2, Feb 71, Abstract No 2.32.1838)

Translation: The problem of tolerances on the spectral sensitivity curves of radiation receivers and the spectral curves of correcting light filters in objective color comparators is investigated. As a result of the experiment the following was discovered: for the scale range of the EKTs-1 and FKTs-Sh comparators the differences in the addition function systems of M. M. Gurevich and D. A. Shklover are not reflected in the measurement results. In the same way the measurement results from using the comparators do not depend on the choice of illumination source. The system of zonal light filters (red, green, blue) used for approximate estimation of the whiteness carry systematic errors exceeding the comparator measurement errors by an order. There are 3 illustrations, 4 tables and a 3-entry bibliography.

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203720003-2"

UNCLASSIFIED PROCESSING DATE--160CT70
TITLE--EFFECT OF LOW FREQUENCY MECHANICAL VIBRATIONS ON THE EXTRACTION OF
VEGETABLE OILS -UAUTHOR-(04)-NIYAZOV, M.I., SALIMOV, Z., YUSUBOV, N., SHARIPOV, D.

COUNTRY OF INFO--USSR

SOURCE--UZB. KHIM. ZH. 1970, 14(1), 71-2

DATE PUBLISHED ---- 70

SUBJECT AREAS -- BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--VEGETABLE OIL, LOW FREWMENCY, VIBRATION, CHEMICAL SEPARATION

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1999/0301

STEP NO--UR/0291/70/014/001/0071/0072

CIRC ACCESSION NU--AP0122503

UNCLASSIFIED.

2/2 018 UNCLASSIFIED PROCESSING DATE--160CT70 CIRC ACCESSIUN NO--APO122503 ABSTRACT/EXTRACT-- (U) GP-0- ABSTRACT. THE EFFECT OF LOW FREQUENCY MECH. VIBRATION ON EXTN. OF COTTONSEED MEAL (8.78 PERCENT GIL, 4.2 PERCENT H SUB2 (1) WAS INVESTIGATED. THE EXTN. COLUMN HAD DIMENSIONS: LENGTH (LAYER OF EXTRACTION MATERIAL) 340 MM; DIAM. 40 MM; VIBRATION AMPLITUDE 8 MM; FREQUENCY 3.5 HZ; AV. DIAM. OF EXTD. PARTICLES 4 MM; TEMP. 20 DEGREES; FLOW RATE OF SOLVENT 0.35-2.0 CM-SEC. A CONSIDERABLE INTENSIFICATION OF THE EXTN. PROCESS WAS ACHIEVED BY USE OF I IN COMPARISON WITH COMMON EXTN. PROCESS WITHOUT I UNDER THE SAME CONDITIONS. THE EFFECT OF I IS BASED MAINLY ON IMPROVEMENT OF EXTERNAL DIFFUSION. FACILITY: TASHKENT, POLITEKH, INST., TASHKENT, USSR. UNCLASSIFIED

UDC 553.981/982(479.24)"313"

OVANESOV, G. P., DURMISH'YAN, A. G., and YUSUF-ZADE, Kh. B., Ministry of Petroleum Industry, Caspian Sea Administration for Oil Exploration

"Prospects for Discovery of Oil and Gas Fields in the Baku Archipelago"

Moscow, Geologiya Nefti i Gaza, No 1, Jan 73, pp 1-5

Abstract: Exploratory structural and cartegraphic drilling, analysis of volcanic activity and products of their eruptions are said to indicate the probability of finding petroleum and gas deposits in the Baku Archipelago. The findings to date in this area are briefly reviewed. In summarizing the specific peculiarities of the anticlinal rise the large throw and the high charging coefficient of the pits, secondary longitudinal disturbances in tectonic structure, regional anomalous high stratal pressure, regularity of development of hydrocarbons in folds, particularly in the gaseous phase, and the high productivity of Pleocene rises are discussed and their further utilization considered. These peculiarities are said to illuminate the formation of petroleum and gas deposits and to indicate the necessary di-

1/1

UDC: 616.921.5-092.9:612.015.348

MAMEDOV, A. A., Doctor of Medical Sciences, YUSUFKHANOV, A. K., Junior Scientific Associate, MUSTAFAYEVA, T. I., Graduate Student, Laboratory of Biochemistry of Viruses, Azerbayduzhan Scientific Research Institute of Virology, Microbiology, and Hygiene imeni G. M. Musabekov

"Shift in the Free Amino Acid Content in the Blood Serum of White Mice During Experimental Influenza"

Baku, Azerbaydzhanskiy Meditsinskiy Zhurnal, No 1, Jan 71, pp 61-64

Abstract: The content of some 17 free amino acids in the blood seri of 100 healthy and infected white mice was determined by paper chromatography. The tests were repeated 3 to 6 times. Lysine, alanine, and valine were present in the greatest quantities (62.55, 58.3, and 14.3 mcg/ml, respectively). The content of arginine, serine, histidine, asparagine, proline, and methionine was lowest (9.98, 6.2h, .6.65. 17.86, 19.9, and 16.63 mcg/ml, respectively). Content of the remaining eight amino acids was intermediate, ranging from 20.12 to somewhat lower. In particular, there was a sharp drop in the content of essential amino acids. The quantitative change in free amino acid content contradict

- 42 -

USSR

MAMEDOW, A. A., et al, Azerbaydzhanskiy Meditsinskiy Zhurnal, No 1, Jan 71, pp 61-64

assumptions that there is a lack of coordination in the exchange of amino acids and the other components of nitrogen metabolism. The data provide improved insight into the mechanism of protein metabolism during infectious processes and indicate potential directions for research on methods which will make it possible to normalize and stabilize this breakdown.

2/2

1/2 542 UNCLASSIFIED PROCESSING DATE--11SEP70 TITLE--CONDENSATION OF GASOLINE VAPOR IN THE PRESENCE OF WATER VAPOR -U-

AUTHOR -- YUSUFOVA. V.D., NEYKOUKHT, N.N.

COUNTRY OF INFO--USSR

SOURCE-KHIM. NEFT. MASHINOSTR. 1970, (2), 18-20

DATE PUBLISHED----70

SUBJECT AREAS -- PROPULSION AND FUELS

TOPIC TAGS--CHEMICAL SEPERATION, GASOLINE, WATER, VAPOR CONDENSATION

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1990/2060

STEP NO--UR/0314/70/000/002/0018/0020

CIRC ACCESSION NO--AP0109992 7.7.7.7.7.7.7.7. UNCLASSIFIED

2/2 -012 UNCLASSIFIED PROCESSING DATE--1155270 CIRC ACCESSION NO--AP0109992 ABSTRACT/EXTRACT--(U) GP-0-ABSTRACT. THE TITLE STUDY WAS CONDUCTED IN A HORIZONTAL FLOW CONDENSER AT VAPOR PRESSURES OF 1.2-1.5 ATM. TEMPS. 90-110DEGREES, AND FLOWS LESS THAN OR EQUAL TO 15 M-SEC. HEAT TRANSFER COEFFS. (ALPHA) WERE DETD. AS FUNCTIONS OF A HEAT FLOW (Q), TEMP. DIFFERENCE (DELTAT) BETWEEN STEAM AND WALL, PERCENT WATER VAPOR IN THE STEAM, AND CONDENSER LENGTH. VARIATIONS IN ALPHA DUE TO TUBE MATERIAL, TUBE FOULING, SUPERCOOLING, HYDROCARBON COMPN. AND D., AND INTERMEDIATE REMOVAL OF CONDENSED PRODUCTS WERE EXAMD. IN 20-25 TIMES 2000-6000 MM TUBES AT Q EQUALS 10-5+3.01 TIMES 10 PRIME4 KCAL-M PRIMEZ HR. AN OVERALL EQUATION WAS DEVELOPED WHICH YIELDS ALPHA WITHIN PLUS OR MINUS 20PERCENT OF EXPTL. FOR GASOLINE VAPORS CONTG. LESS THAN OR EQUAL TO LOPERCENT H SUB2 O, DELTAT EQUALS 10-5DDEGREES, TUBE LENGTH TO DIAM. RATIOS EQUALS 100-300, AND Q EQUALS 5000-30,000 KCAL-M PRIMEZ HR. UNCLASSIFIED

BDC 621.791.754:669.71:669.691.004.82

YUSUFOVA, Z. A., Engineer and LESKOV, G. I., Doctor of Technical Sciences

"On the Mechanism of Oxide Film Destruction in Welding Aluminum Alloys in ...

Moscow, a Medium of Svarochnoye Proizvedstvo, No 7, Jul 70, pp 57-50

Abstract: Studies were made of the mechanism of oxide film destruction in direct current of different polarity arcs and in arc alternating current in argon and nelium. It was previously established that cathode sputtering does not eliminate more than 2.6% of the film and does not play a significant role in the mechanism of its destruction by the welding arc. Test procedures are briefly described. It was observed that a d-c arc of normal polarity in Arcauses a growth in oxide film thickness, while in welding in helium, with a d-c arc of normal polarity (anode spot), a band is formed which is clear of oxide film. Thus, for the destruction of Al203 film the existence of a cathode spot on its surface and the effect of cathode sputtering are not necessary. It was also observed that the arc in He causing the sputtering of Al203 film in the zone of the anode spot is characterized by a higher voltage between electrodes at normal polarity, 23 v at negative polarity) than the arc in Ar (il v 1/2)

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203720003-2"

USSR

YUSUFOVA, Z. A., et al, a Medium of Svarochnoye Proizvodstvo, No 7, Jul 70, pp 57-58

This points to the possibility of film destruction by an energy flow of sufficient density. It is concluded that a thermal effect is the most probable mechanism of oxide film destruction. A specific power of 11 x 10^{3} 10^{3} / m = 10 m =

2/2

WC 547.944.6

TURDIKULOV, KH., YUSUNOV, M. K., SADYKOV, A. S., Tashkent Order of the Red Banner of Labor State University imeni V. I. Lenin

"Structure of the K-13 Alkaloid from Colchicum Kesselringii"

Tashkent, Khimiya Prirodnykh Soyedineniy, No 4, 1972, pp 502-505

Abstract: A previous report was published on the separation of alkaloids from the bulbo-tubers Colchicum kesselringii Rgl. (Kh. Turdikulov, et al., KhPS, 541, 1971). A study has been made of the unknown phenol substance with R_f 0.31 called K-13 alkaloid. It belongs to the series of photochemical isomers of tropolonic alkaloids. The K-13 composition is C₂₁H₂₃O₆N. It has a melting point of 287-288°, \(\sigma \sqrt{0} \) D-420°. The ultraviolet, infrared, nuclear magnetic resonance and mass spectral data indicate the presence and the location of the corresponding functional groups. Beginning with the negative specific rotation, it is concluded that the K-13 alkaloid belongs to sis-trans - isomers which is confirmed by methylation in \(\gamma \- \)-lumicolchicine. The position of the hydroxyl group on the C₂ of the K-13 alkalod was determined on the basis of the nuclear magnetic resonance spectrum and by comparison with known compounds of similar structure.

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203720003-2"

TITLE--STARTING TEMFERATURE OF A REACTION BETWEEN DXIDES IN THE SOLIO

AUTHOR-(04)-YUSFIN, YU.S., KARABASOV, YU.S., YUSUPKHODZHAYEV, A.A., SUKHININA, V.M.
COUNTRY OF INFO-USSR

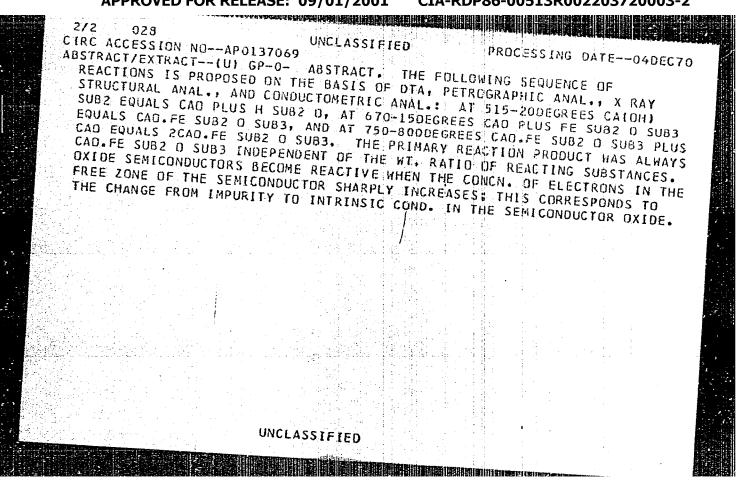
SOURCE--IZV. AKAD. NAUK SSSR, METAL. 1970, (3), 53-5

DATE PUBLISHED----70

SUBJECT AREAS--PHYSICS, CHEMISTRY

TOPIC TAGS--SEMICONDUCTOR MATERIAL, CALCIUM OXIDE, TEMPERATURE EFFECT, CHEMICAL REACTION, ELECTRON DENSITY, STRUCTURAL ANALYSIS

CONTROL MARKING-NO RESTRICTIONS


OCCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3007/1872

STEP NO--UR/0370/70/000/003/0053/0055

CIRC ACCESSION NO--APOI37069

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203720003-2"

YUSUPOV. A.

"The State of Hemocoagulation During Chronic Intoxication With Hexachlorane in an Experimental Setup"

Tr. Uzb. NII San. Gigiyeny i Profzabolevaniy (Proceedings of the Uzbek Scientific Research Institute of Sanitation, Hygiene and Professional No 24, Dec 73, Abstract No 24F 2170)

Translation: Hexachloran (I, oil emulsion) was administered p.o. to rabbits daily for 4 months at a dose of 6.5 mg/kg, determining the activity of the coagulating (SVS) and anticoagulating systems (PSVS) in blood. During the experiment and especially towards the end of the intoxication period a drop in the activity of SVS in blood was noted (longer period of the coagulation, recalcification, lowered tolerance of plasma toward heparine, trombopletic increase in the concentration of fibrinogen has been noticed. Administration of I led to an increased activity of blood PSVS; 4 months after priming,

USSR

YUSUPOV, A., Tr. Uzb. NII San. Gigiyeny i Profzabolevaniy, 1973, Vol 5, pp

the fibrinolytic activity of blood increased from 8.1 to 19.2% and the content of free heparine from 3.7 to 7.8 units/ml. Twenty days after stopping the activity of proaccelerine became normal, the concentration if fibrinogen remaining elevated; the other SVS indexes remained depressed, and those of PSVS — elevated. A stress is made of the importance of studying the SVS and PSVS of the blood in evaluating the action of chloroorganic pesticides and for diagnostic aspects of their toxic effects on warm blooded animals.

2/2

- 54 -

USSR

VDC 632.95

ABDURASULEVA, A. R., AKHMEDOV, K. N., YUSUPOV, A., and TADZHIMUKHAMEDOV, Kh. S., Tashkent University

"Synthesis of Benzylphenols or Benzylresorcinols and Their Methyl Ethers"

USSR Author's Certificate No 327150, filed 28 May 70, published 16 Mar 72, (from Referativnyy Zhurnal -- Khimiya, Svodnyy Tom (I, L-S), No 1(II), 1973, Abstract No 1N480P by T. A. Belyayeva)

Translation: Benzylphenols, benzylresorcinols and their methyl ethers which can be used as bactericides, fungicides, or antihelminths, are synthesized from phenols and resorcinols in the reaction with PhCH2Cl during heating in the presence of FeCl₃·12H₂O. Example: A mixture consisting of 23 g PhOH, 6.33 g PhCh2Cl and 0.0076 g FeCl₃·12H₂O is heated at 100-110°C for 20 min., excess of PhOH is removed by distillation at 10-15 mm pressure, the residue is redistilled, and fractions are collected at 135-142°C/2. The resulting 8 g mixture contains 58% o-PhCH₂C₆H₄OH, b.p. 130-131°C/1, and 42% p-PhCH₂C₆H₄OH, m.p. 83-84°C (CCl₄). In a similar way another mixture is prepared, b.p. 140-145°C/2, consisting of 44.6% o-PhCH₂C₆H₄OMe, m.p. 30-31°C (diluted alcohol) and 55.4% p-PhCH₂C₆H₄OM_e, b.p. 154-155°C/4. Chromatographic analysis (Al₂O₃) showed the presence of: 2-benzylresorcinol, 1/2

र्व र कार्य कर कार्य कार कार्या भारतीय समिति हो। इस कार्य इस कार्य कार्य

USSR .

ABDURASULEVA, A. R., et al., USSR Author's Certificate No 327150, filed 28 May 70, published 16 Mar 72

m.p. 59° C (benzene), 4-benzylresorcinol, m.p. 78° C (benzene). From 15.5 g resorcinol methyl ether, 3.16 g PhCH₂Cl and 0.0054 g FeCl₃·12H₂O 4.9 g of mixture is obtained, b.p. $157-160^{\circ}$ C/2, n^{20} D 1,5923, containing 21% 2-PhCH₂-3-MeOC₆H₃OH, m.p. 77° C (hexane), 36% 4-PhCH₂-3-MeOC₆H₃OH, m.p. 168° C (hexane), 43% 6-PhCH₂-3MeOC₆H₃OH, m.p. 168° C. A heating of a mixture consisting of 27.6 g dimethyl ether of resorcin, 2.53 g PhCH₂Cl and 0.052 g FeCl₃·12H₂O at 110-130°C for 30 min. yields 4.2 of substance, b.p. 168° C-147°C/2, 168° C) 168° C, which contains according to gas-liquid chromatography 168° C-PhCH₂-1,3-(MeO)₂C₆H₃ and 168° C-PhCH₂-1,3-(MeO)₂C₆H₃.

2/2

__34_-

USSR

UDC 524.04:681.14

YUSUPOV, AL. K. (Makhachkala)

"Distribution of Stresses in an Elastic Samiplane With a Modulus of Elasticity that is Quasi-Steady With Respect to Depth"

Moscow, Stroitel naya Mekhanika i Raschet Sorruzheniy, No 1, 1971, pp 26-31

Abstract: The stresses originating in an inhomogeneous base under the action of a distributive load and a concentrated load are determined. The modulus of elasticity is represented in the form of a sum of mathematical expectation which is approximated by an exponential function of depth, and in the form of a steady-state random function. The random function is represented by a spectral expansion. The stressed state of the semiplane and the kernel of a statistically inhomogeneous base are determined. An example of calculation of the stresses is presented. 4 figures, 5 bibliographic entries.

1/1

- 56 -

USSR

UDC 621.438

KURZON, A. G., MITYUSHKIN, Yu. I., YUSUPOV, E. I., and SOKOLOV, B. G.

"Investigation of Conventional Single-Row, Single-Row With Repeated Admission and Double-Row Supersonic Turbine Stages With Low-Rate Injection"

Kazan', Izvestiya Vysshikh Uchebnykh Zavedeniy, Aviatsionnaya Tekhnika, No 3, 1971, pp 69-74

Abstract: The results are presented of a detailed experimental investigation of the efficiency of single-row supersonic stage with repeated admission and of its comparison with a double-row and single-row supersonic stages with low rate injection, at various operating conditions, characterized by values of injection rates \leq , degree of expansion $\Pi_{-} = p_0/p_2$ and velocity characteristic u/c_{ad} . The basic data on all stages investigated are presented in a table. The comparison of experimental data obtained at \leq 0.11 rate of injection shows that: 1) a repeated admission substantially increases the efficiency of a single-row supersonic stage with low rate of injection at $u/c_{ad} \leq 0.26$, and can be approached up to efficiency of double-row supersonic stage at other similar conditions; 2) a single-row stage with repeated admission at $u/c_{ad} > 0.16$ and $\Pi_{-} > 14$ is more efficient than the double-row stage

1/2

USSR

KURZON, A. G., et al, Izvestiya Vysshikh Uchebnykh Zavedeniy, Aviatsionnaya Tekhnika, No 3, 1971, pp 69-74

with the same rate of injection. This means that in cases when the simplicity of low power turbine construction, reduction in weight and production cost, and high reliability of turbine engine play a decisive role, the single-row with repeated admission can be considered a basic type of turbine stage for driving auxiliary mechanisms and compressors.

2/2

- 120 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203720003-2"

85.7. SARTO CONTRACTO CONTRA

USSR

CHICHENIN, P. I., ADILOV, D. A., YUSUPOV, K., YU., SHARIPOV, M. K., PULATOV, Ya. G., LI GVAN KHVA, V. T., AGZHANOV, N. A., and DZHURAYEV, Kh. D., Uzbek Scientific Research Institute of Epidemiology, Microbiology, and Infectious Diseases

"Epidemiological Characteristics of Anthrax in Uzbekistan During Recent Years"

Tashkent, Meditsinskiy Zhurnal Uzbekistana, No 1, Jan 73, pp 15-19

Abstract: In 1949-60 the incidence of anthrax affecting human beings decreased by a factor of three in the Uzbek SSR from that in 1925-48, mainly as a result of immunization of occupationally exposed persons. In recent years the over-all incidence of anthrax among both humans and animals in the Uzbek SSR was reduced by effective prophylactic measures. However, there is no room for complacency, in view of the fact that there was in 1949-60 and especially in 1961-70 an increase in the relative weight of group infections connected with the uncontrolled utilization of meat and of other animal products after obligatory slaughter of diseased farm animals, particularly in the private sector. During the period under consideration, the frequency of anthrax in the Uzbek SSR exceeded that in the USSR by a factor of 3-4, with the number of cases in the Uzbek SSR comprising 10-16% of that in the entire USSR. On the basis of data covering the 1/2

USSR

CHICHENIN, P. I., Meditsinskiy Zhurnal Uzbekistana, No 1, Jan 73, pp 15-19

incidence of anthrax in the past 20 yrs, one can differentiate between three zones in the Uzbek SSR: I) A zone of stable incidence among humans and animals (Tashkentskaya, Surkhandar'inskaya, and Samarkandskaya Colasts); II) A zone with periodic outbreaks (Andizhanskaya, Khorzemskaya, and Kashkadar'inskaya Colasts and the KKASSR); III) The zone with the most satisfactory conditions (Bukharskaya, Syrdar'inskaya, Namanganskaya, and Ferganskaya Colasts). The ratio of cases of human anthrax to those in the entire Uzbek SSR was 62.33, 35.25, and 2.42% in zone I, II, and III, respectively, and that of anthrax of animals 67.13, 32.02, and 0.85% in zone I, II, and III, respectively. In view of the fact that the infection remains in the soil, prophylactic measures in locations at which anthrax has occured must be carried out constantly regardless of the time that has elapsed since the last outbreak and these measures reinforced at times at which digging into the ground takes place, e.g., in connection with agricultural irrigation.

2/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203720003-2"

USSR

UDC 911.3:616.927(575.1)

NEVSKIY, M. V., YUSUPOV, K. Yu., AMINADZE, Z. M., KAPLUNOVA, M. S., and PULATOV, Ya. G.

"Morbidity Dynamics of Typhoid and Paratyphoid Fever in the Uzbek SSR"

Nauchn. tr. uchenykh i prakt. vrachey Uzbekistana (Scientific Works of Research and Practicing Physicians in Uzbekistan) 1970, sb. 6, pp 16-20 (from RZh-Meditsinskaya Geografiya, No 4, Abstract No 4.36.203)

Translation: During the years 1958-1965, the Uzbek SSR registered a decrease in the number of cases of all typhoid and paratyphoid by a factor of 2.4; typhoid by a factor of three, while the number of paratyphoid fever cases remained unchanged. In cities the number of typhoid-paratyphoid cases decreased three-fold; in rural areas — two-fold. In 1958 45.7% of the patients in rural areas had typhoid-paratyphoid and in 1965 — 54.6%. In the total paratyphoid picture for the past three years, the prevailing form was paratyphoid B, responsible for a 79% morbidity.

1/1

USSR

UDC: 911.3.616.927(575.1)

CHICHENIN, P. I., PULATOV, Ya. G., YUSUPOV, K. Yu., LI GVANKHVA, V. T., BADANOVA, L. A., KOVALEVA, F. S.

"The Prevalence of Typhoid-Paratyphoid Infections and the Means for Eradicating them in the Uzbek SSR"

V sb. Materialy XV Vses. s'ezda epidemiologov, mikrobiologov i infektsionistov, <u>Tezisy dokl. Ch. I</u> (Proceedings of the 15th All Union Conference of Epidemiologists, Microbiologists and Specialists in Infectious Diseases, Reports of Theses, Part I--collection of works) Moscow, 1970, pp 279 (from RZh-36. Meditsinskaya geografiya, No 1, Jan 71, Abstract No 1.36.250)

No Abstract/

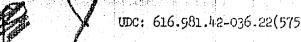
1/1

USSR

YUSUPOV, K. Yu., Senior Scientific Associate and AMINZADE, Z. M., Uzbek Scientific Research Institute of Epidemiology, Microbiology and Infectious Diseases

"Epidemiological Characteristics of Typhoid-Paratyphoid in Uzbekistan"

Tashkent, Meditsinskiy Zhurnal Uzbekistana, No 9, Sep 70, pp 50-54


Abstract: Although the incidence of typhoid fever and paratyphoid, among other infectious diseases, has fallen sharply because of improved living conditions in the USSR after World War II, it is still high in the republics of Central Asia. A characteristic of typhoid-paratyphoid is its uneven territorial distribution: up to 45% of all cases for the USSR occur in Central Asia and Armenia, which have only 14% of the entire population of the country. Studies show that typhoid and paratyphoid are transmitted mainly through polluted water in open reservoirs used for household purposes. In recent years the incidence of these diseases has been increasing in rural localities as compared to urban centers, which may be attributed partially to better health education, sanitation, and medical service in urban areas. The seasonal increase in typhoid paratyphoid, due perhaps to more active spread of the infection during the summer and fall months, is very pronounced in Uzbekistan, where it has not yet been successfully controlled. Whereas in the past typhoid paratyphoid affected mainly people in their prime, because of 1/2

USSR

YUSUPOV, K. Yu., Meditsinskiy Zhurnal Uzbekistana, No 9, Sep 70, pp 50-54

their wider scope of activity and contacts, in recent years it has affected mostly children up to 14 years of age. Prophylactic inoculation is less extensive in this age group, and personal hygiene is poorer, there is greater contact with polluted water, and natural and artificial immunity levels are lower. Carriers are now believed to be primary sources of infection, and because they are difficult to detect in the mildest of cases, timely diagnosis with early laboratory tests, isolation and decontamination are of utmost importance. Extensive application of bacteriophage therapy, as well as inoculations with Y-antigen are recommended for children under two years of age.

2/2

DZHALIIOV, K.D., DZHURAYEV, N.D., MURABAYEV, I.K., YUSUPOV, K.YU., and PULATOV, YA.G., Uzbek Institute of Epidemiology, Microbiology, and Infectious Diseases, and Uzbek Republic Sanitary Epidemiological Station and Infectious Diseases,

"Aspects of the Epidemiology of Brucellosis in Uzbekistan"

Moscow, Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii, No 2, 1970, pp 116-120

Abstract: Although the incidence of brucellosis has declined sharply in recent years in the Soviet Union as a whole, it remains high in the Central Asian republics, particularly Uzbekistan, mainly because cattle and sheep raising is widespread in both the public and private sections. From 1962-1966 cattle were the source of the disease in man in 60.6% of the cases, sheep and goats in 32.5%, and other animals in 6.9%. The main routes of infection were alimentary (30.9%), contact (16.2%), and combined alimentary-contact (9.9%). The peak of the disease occurred during the spring and summer, when contacts of people with animals (lamoing, shearing of wool) were most frequent, and consumption of dairy and milk products highest. Farms affected with the disease in 1966 were in Kashkadar'ya oblast (15.8%), Samarkand (14.2%), Tashkent oblast (12.3%), Karakalpak ASSR (12%), Surkhandar'ya (11.4%), Andizhan (10.7%) and Fergan (8.7%) oblasts. Among humans, more cases of chronic orucellosis than acute forms of the disease are reported every year.

ernice antener i antener antener antener antener i i intere i i intere antener antener antener antener antener Ernice antener alla intener antener antener antener i intere i i intener antener antener antener antener anten AP0043938

PRIMARY SOURCE:

Zhurnal Mikrobiologii, Epidemiologii, i Immunobiologii, 1970, Nr 2, pp //6-/26

SOME PROBLEMS OF EPIDEMIOLOGY OF BRUCELLOSIS IN UZBEKISTAN

Dzhalilov, K. D.; Dzhurayev, N. D.; Musabayev, I. K.; Yusupov, K. Yu.; Pulatov, Ya. G.

As a result of analysis of the incidence of brucellosis and of individual problems of epidemiology and epizootology concerning brucellosis in Uzbekistan in 1956-1966, it was established that the index of brucellosis affection of farm animals was unequally distributed in the republic: in 1962-1966 88.7% of the affected animals were found in Samarkand, Bu-khara, Kashkadarya, and Tashkent regions, and also Karakalpak ASSR and Tashkent city, only 11.3% being revealed in Surkhandarya, Khoresm, Fergana and Syrdarya regions.

A spring-summer seasonal prevalence was noted (80%). It was shown that brucellosis injection of human beings occurs mainly by alimentary route, cattle serving as the source

REEL/FRAME

6 DI

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203720003-2"

Alkaloids

USSR

UDC 547.944.6

TURDIKULOV, Kh., YUSHPOV M., and SADYKOV, A. S., Order of the Red Esnner of Labor Lashkent State University im. V. I.

*Desacetylcolchincin and Desacetylcolchicein -- the New Alkaloids Isolated from Merendera Robusta"

Tashkent, Khimiya Prirodnykh Soyedineniy, No. 2, 1972, pp 247-

Abstract: Three new alkaloids were discovered in Merendera robusta B s e., collected in 1958. On the basis of UV and NR spectroscopy the compounds were identified as desacetylcolchicin, desacetylcolchicein and N-methylcolchimine, structures were verified by preparation of Namethyl and N-acetyl derivatives.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203720003-2"

WC 547,944.6

TURDIKULOV, KH., YUSUPOV, H. K., and SADYKOV, A. S., Order of Red Banner of Labor Tashkent State University imeni V. I. Lenin

"Alkaloids of the Bulbs of Colchicum Kesselringii"

Tashkent, Khimiya Prirodnykh Soyedineniy, No 4, 1971, p 541

Abstract: This study is a continuation of earlier research conducted by the authors on the alkaloid content of Colchium Kesselringii (Kesselring's meadow

The phenol portion of the fraction of alkaloids of neutral-phenol character was studied with use of thin-layer chromatography (aluminum oxide). The presence of four substances was established: 3-demethyl- &-lumicolchicine, 2-chemethylcolchicine, and two other alkalcids, one with the composition C21H2306H, which appears to belong to the A-lumiderivative tropolon series. This particular aikaloid, on the basis of the physico-chemical data obtained, may be the same as the alkaloid S2, separated by Canonica et al. from Gloriosa superba L. The authors' study represents the first attempt of any sort to separate alkaloids from Colchicum Kesselringii.

1/1

- 17 -

1/2 009 UNCLASSIFIED PROCESSING DATE--27NOV70
TITLE--ALKALDIDS OF COLCHICUM KESSELRINGII CORMS -U-

AUTHOR-1021-YUSUPOV, M.K., SADYKOV, A.S.

COUNTRY OF INFO--USSR

SOURCE-RAST. RESUR. 1970, 6(1), 104-7

DATE PUBLISHED ---- 70

SUBJECT AREAS -- BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--PROCESSED PLANT PRODUCT, ALKALOID, CHEMICAL IDENTIFICATION, SUCROSE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3006/0459

STEP: NO--UR/0503/70/006/001/0106/0107

CIRC ACCESSION NO--AP0134227

·最低性的 [4] . 1 1 - 2 2/2 UNCLASSIFIED PROCESSING DATE--27NGV70 GIRC ACCESSION NO--AP0134227 ABSTRACT/EXTRACT--(U) GP-0-ABSTRACT. THE CORMS CONTAINED 0.13-0.18PERCENT TOTAL ALKALOIDS, DEPENDING ON THE GROWTH PERIOD. COLCHICINE, Z, DEMETHYLCOLCHICINE, KESSELRINGINE, AND 7 CITHER ALKALOIOS WERE IDENTIFIED. THE MAX. CONTENT OF MOND AND DISACCHARIDES WAS FOUND IN FLOWERS, THAT OF STARCH IN THE FRUIT. SUCROSE WAS THE MAIN FACILITY: TASHKENT, GOS. UNIV., TASHKENT, USSR. DISACCHARIDE. UNCLASSIFIED

UNCLASSIFIED PROCESSING DATE--04DEC70
1/2 012
LITLE--THE ALKALOID L-6, C SUB3 HYDROXYLATED DERIVATIVE OF

GAMMA, CUMICOLCHICINE -U-AUTHOR-(03)-CHOMMADOV, B., YUSUPOV, M.K., SADYKOV, A.S.

EGUNTRY OF INFO--USSR

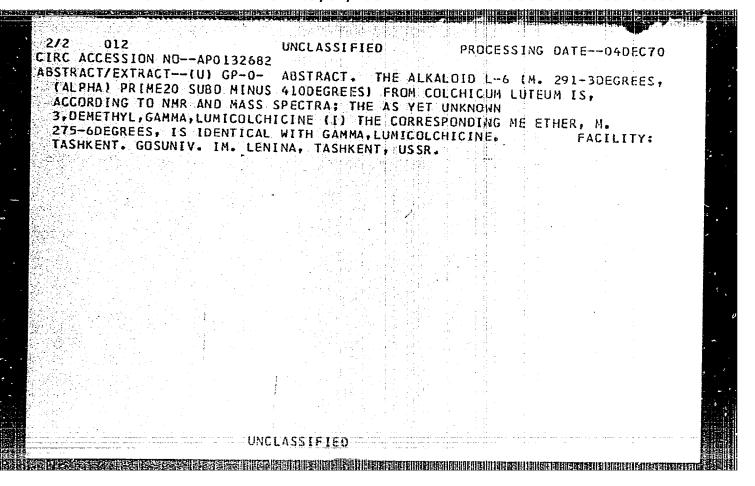
SOURCE-KHIM. PRIR. SOEDIN. 1970, 6(2), 275

DATE PUBLISHED-----70

SUBJECT AREAS-BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--PROCESSED PLANT PRODUCT, ALKALOTO, MOLECULAR STRUCTURE, MASS SPECTRUM, NMR

CENTROL MARKING--NO RESTRICTIONS


DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3005/0467

STEP NO--UR/0393/70/005/002/0275/0275

CIRC ACCESSION NO--APO132682

-- UNGLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203720003-2"

I/2 021 UNCLASSIFIED PROCESSING DATE--04DEC70
TITLE--STRUCTURE OF THE ALKALOID L.5 FROM COLCHICUM LUTEUM -U-

AUTHOR-(03)-CHOMMADOV, B., YUSUPOV, M.K., SADYKOV, A.S.

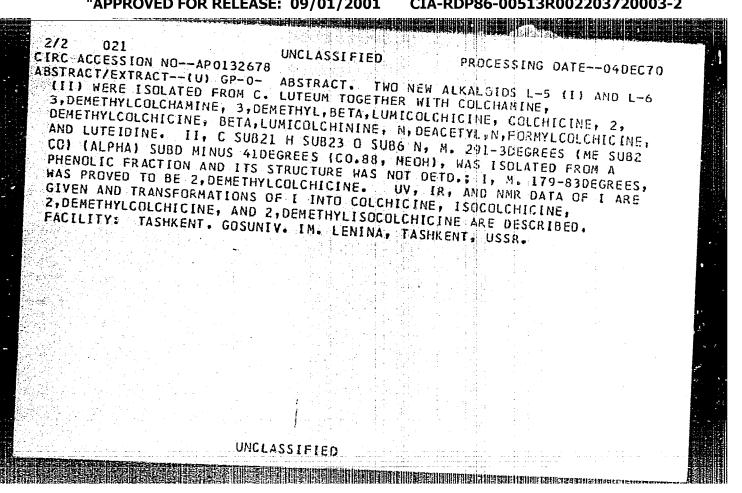
COUNTRY OF INFO--USSR

SOURCE--KHIM. PRIR. SOEDIN. 1970, 6(1), 82-8

DATE PUBLISHED----70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--PROCESSED PLANT PRODUCT, ALKALDID, MOLECULAR STRUCTURE, UV SPECTRUM, IR SPECTRUM, NUCLEAR MAGNETIC RESONANCE


CONTROL MARKING-NO RESTRICTIONS

OCCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3005/0463

STEP NO--UR/0393/70/006/001/0082/0088

CIRC ACCESSION NO--APOL32678

UNCLASSIFIED

US. R

UDC: 547.944.6

CHOMMADOV, B., WISHPOV, M.K., SADYKOV, A.S., Tashkent State University imeni V.I. Lenin, Tashkent, Ministry of Higher and Secondary Specialized Education Uzbek SSR

"The Structure of Alkaloid L-5 from Colchium Luteum"

Tashkent, Khimiya Prirodnykh Soyedineniy, No 1, 1970, pp 82-88

Abstract: Alkaloids were extracted from the plant body of the Colchium luteum Baker (meadow saffron) which grows in the Sazan-Ata Canyon of the Chimkentskaya Oblast. The alkaloids extracted in the flowering stage amounted to 1.58%, and in the fruiting stage -- to 0.2%. Absorption chromatography on aluminum oxide revealed that the alkaloid mixture from the flowering stage is composed of colchamine, 3-demethylcochamine, colchicine, 2-demethylcolchicine and 3-demethyl- β -lumicolchicine. The first two bases with the topolone ring and 3-demethyl-\$\beta\$-lumicolchicine, had never been extracted from saffron before. Analysis of the alkaloid mixture extracted from the fruting stage showed colchicine, β -lumicolchicine, N-desacetyl-N-formylcolchicine, 2-demethylcolchicine, 3-demethyl-\$\beta\$-lumicolchicine, luteldine (alkaloid L-2) and new compounds with Rr of 0.21 and 0.76 (system 1) named L-5 and L-6 respectively. Alkaloid L-5, with an empirical formula of C20H21O6N is a yellow amorphous substance which melts at 179-1830C. It makes up the principal part of the phenol-acid fraction of the alkaloids. Spectroscopic analysis shows that this compound contains the tropolone ring. Spectroscopic and functional 1/2

- USSR

CHCMMADOV, B., et al, Tashkent, Khimiya Prirodnykh Soyedineniy, No 1, 1970, pp 82-88 data suggest the following formula:

 $c_{15}H_9(\text{осH}_3)_2(\text{оН})(\text{со, оН})$ (NHCOCH₃).

It was established that the structure corresponds to 2-demethylcolchicine, which is present in all colchicine-bearing plants of Central Asia, and may be an intermediate product in the biosynthesis of colchicine. Paper chromotography showed that the alkaloid mixture also contains three new alkaloids with R_f of 0.38, 0.40

2/2

A ·

WC 547.944.945

7

ZUPAROVA, K. M., CHOMMADOV, B., YUSUPOV, M. K., SADYKOV, A. S., Tashkent Order of the Red Banner of Labor State University imeni V. I. Lenin

"Alkaloids of Merendera Jolantae"

Tashkent, Khimiya Prirodnykh Soyedineniy, No 4, 1971, pp 487-493

Abstract: A study was made of the alkaloids of Merendera Jolantae in which it was discovered that along with tropolonic commounds it also contains bases with other hydrocarbon rings. By extraction of 48 kg of the above-ground parts of the merendera, 0.19% of the total alkaloids were isolated, including 0.28% of the bases. The compounds β -lumicolchicine, colchicine, 2-dimethylcolchiceine and the unknown lumi-derivative -- KJ-3 alkaloid (melting point 268-270°) and also colchiceine were obtained by chromatography on adsorbent fractions of neutral and phenol compounds. Colchamine, colchaneine and the new bases MJ-1, MJ-2 and MJ-4 isolated from the bases and phenon-basic fractions. The presence of 3-demethylcholchamine and four pore unknown, nontropolonic compounds with R 0.40, 0.49, 0.53 and 0.54 was determined by chromatographic methods. The formula C₁₆H₁₆(OH)(OCH₃)(CO)(NCH₃) was proposed for Jolantamine (the base MJ-1) by spectral methods.

UDC 547.26.118

YUSUPOV, M. M., and ROZHKOVA, N. K., Order of the Labor Red Banner Institute

"Synthesis of Some Dialkyl-N-(2-benzthiazolyl)-amidophosphates"

Tashkent, Uzbekskiy Khimicheskiy Zhurnal, No 4, 1973, pp 63-64

Abstract: To a solution of 1.5 g of amincbenzthiazole in 10 ml of dry acetone, 1.66 g of freshly distilled disopropyl phosphite and 2 ml of CCl4 were added. After addition of 1.5 ml of triethylamine and stirring for 2 hrs at room temperature followed by 1 hr at 500 and after an overnight storage, the precipitated acid chloride was removed, the solvent evaporated end the residual oil washed with HCl to yield the dialkyl-N-(2-benzthiazolyl)-amidophosphates. The agents did not exhibit adequate defoliative activity.

1/1

- 23 -

UDC 632.95

YUSUPOV. M. M., KOZAK, R. A., and ROZHKOVA, N. K.

"Synthesis of N-Ethyl-S-alkylthiobenzothiazolium Borofluorides"

Sintez Borftoridov N-Etil-S-alkiltiobenzotiazoliya [English Version Above], Tashkent, 1971, 4 pages, (Translated from Referativnyy Zhurnal, Khimiya, No 9, 1972, Abstract No 8 N574 Dep. by the Author's).

Translation: N-Ethyl-S-alkylthiobenzothiazolium borofluorides were manufactured by the interaction of the corresponding S-alkylthiobenzothiazoles with triethyloxonium borofluoride as part of the continuing search for new defoliants and studies of the dependence of defoliant activity on structure.

1/1

1/3 012 TITLESPECTRUPHOTEMETRIC DET AUTHOR-(03)-MINLEVA, V.A. PA	UNCLASSIFIE FERMINATION	D CF COPPER	PROCESSI WITH PIC	NG DATE3000	C170
AUTHOR-(03)-BINLEVA, V.A., PA	CHAUZHANOV,	D.N., YUS	JPOV. M.Y	΄υ ,	
SOURCE DOKL, AKAO. NAUK TADZ	H. 5SR 1970.	Catamates	aritusenementi tuntu.		
DATE PUBLISHED70			-9		
SUBJECT AREAS-CHEMISTRY					
GPIC TAGS—COPPER, METAL CHEM	ICAL ANALYSI	S. SPECTO			
		OI CUIRL	INNO LOWEL	RIC ANALYSIS	,
ONTROL MARKING-NO RESTRICTION					
CUMENT CLASSUNCLASSIFIED COXY REEL/FRAME1999/Co82					
RC ACCESSION NO-AT0122769		UR/0425/70	/013/002	/0037/0039	
	SSIFIED				

2/3 012 CIRC ACCESSION NU-ATO122769 UNCLASSIFIED ABSTRACT/EXTRACT-- (U) GP-0- ABSTRACT. PICRAMINE M (I) GIVES A BLUE 1:1 PRUCESSING DATE--300CT70 COMPLEX WITH CU PRIMEZ POSITIVE AT PH 1.3-1.8; 6 ML 0.01PERCENT I SOLN. IS NEEDED FOR A 50, ML SAMPLE CONTG. IS LESS THAN OR EDUAL TO MUG CU. THE ABSORPTION MAX. OF I AND THE COMPLEX [MOLAR ABSORPTIVITY 3.1 TIMES 10 PRIME41 ARE AT 560 AND 640 MM, RESP. THE CALIBRATION CURVE IS LINEAR AT 0.04-0.45 MUG CU-ML. ZN (1500), CD (1000), MG (1000), PS (2500), CO (100), NI (50), BI (10), CA (20), AND AL (10) (VALUES OF PERMISSIBLE EXCESSES GIVEN) DO NOT INTERFERE, WHILE FE PRIMES POSITIVE, FE PRIMES POSITIVE, II PRIME4 POSITIVE, SN PRIMEZ POSITIVE, AND TRILON B INTERFERE CONSIDERABLY. A GEGL. SAMPLE (0.5-16) IS TREATED WITH A MIXT. OF 10 ML EACH HNG SUB3 AND HE IN A PT CRUCIBLE WITH HEATING H SUB2 O BATH, AND EVAPO. TU DRYNESS. AFTER THIS PROCESS IS REPEATED, 4-5 ML H SUB2 SO SUB4 IS AUDED AND THE MIXT. IS HEATED TO RELEASE DENSE WHITE VAPORS. AFTER COULING, 5 ML H SUSZ O IS ADDED, THE MIXI. IS EVAPD. AND FURTHER HEATED TO WHITE VAPORS. THE RESIDUE IS HEATED WITH 20 ML 1:1 HCL IS FILTERED. FACCURDING TO THE CU CONTENT, 1-10 ML OF FILTRATE IS EVAPO., THE RESIDUE IS DISSOLVED IN 10 ML C. OIN HOL. AND CU IS EXTD. TWICE FOR 3 MIN BY SHAKING WITH 10 ML C.OOIPERCENT DITHIZONE SOLN. IN CCL SUB4. THE EXT. IS EVAPU., I ML EACH H SUB2 SO SUB4 AND HOLP SUB4 ARE ADDED, THE MIXT. IS HEATED TO DECULORIZE THE SULN., EVAPO., AND HEATED TO WHITE VAPORS. THE RESIDUE IS DISSULVED IN 5 HL H SUNZ O, 1.5 ML AQ. 0.04PERCENT I IS ADDED, THE MIXT. IS DILU. TO 50 ML WITH A PH 1.4 BUFFER. THEL AND KELL, AND MEASURED AT 640 NM IN A 2-CM CELL.

3/3 031 UNCLASSIFIED PROCESSING DATE--300CT79
CIRC ACCESSION NO--AT0122769

ABSTRACT/EXTRACT--TO PREP. A CALIBRATION CURVE, 1.5 ML 0.04% I IS ADDED TO A STD. SOLN. CONTG. 2-40 MICROGRAMS CU AND DILD. TO 50 ML WITH THE BUFFER. DOWN TO 10 TO THE MINUS 3 POWER % CU IN 0.5-1-G SAMPLE CAN BE DETD.
(INST. KHIM., DUSHANBE, USSR)

UNCLASSIFIED

1/2 C24

TITLE—EVALUATION OF THE STRENGTH OF INDIVIDUAL CONTACTS BETWEEN SMALL

CRYSTALS IN POROUS BOLIES -UAUTHOR—(04)—SHCHUKIN, YE.D., AMELINA, YE.A., YUSUPDV, R.K., REBINDER, P.A.

CCUNTRY OF INFO—USSR

SURGE—DOKL. AKAD. NAUK SSSR 1970, 191(5), 1037—40 (TECH PHYS) (RUSS)

DATE PUBLISHED————70

SUBJECT AREAS—PHYSICS

TOPIC TAGS—COHESION STRENGTH, PORDSITY, CRYSTAL SURFACE, NAPHTHALENE,

AMMONIUM NITRATE, THERMAL PROCESS

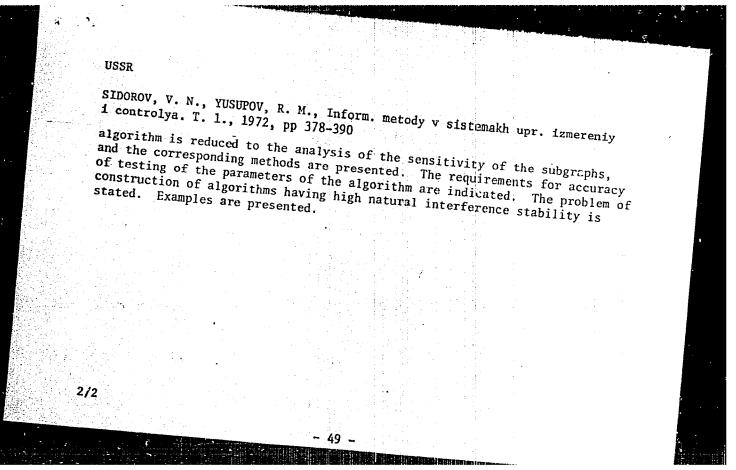
CONTROL MARKING—NO RESTRICTIONS

DOCUMENT CLASS—UNCLASSIFIED
PROXY REEL/FRAME—3003/1496

STEP NO—UR/0020/70/191/009/1037/1040

CIRC ACCESSION NO—ATO130425

UNCLASSIFIED

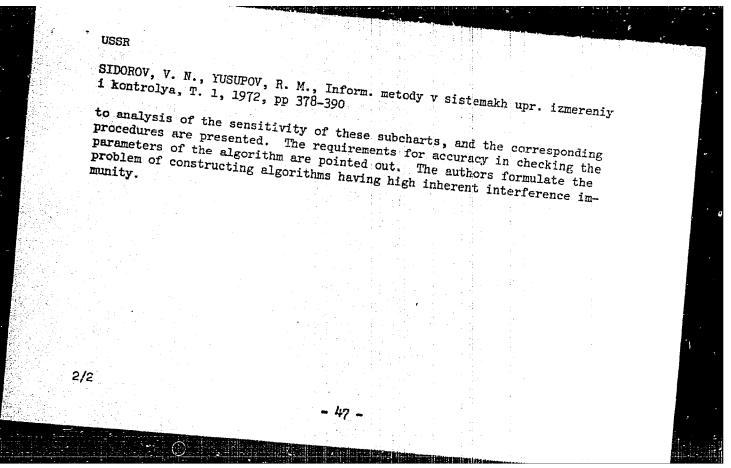

PROCESSING DATE--20NOV70 UNCLASSIFIED CIRC ACCESSION NO--ATO130425 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. FINELY GROUND POWDERS OF MAPHTHALENE AND OF NH SUB4 NO SUB3 AS WELL AS SINGLE CRYSTALS OF THESE SUBSTANCES WERE COMPRESSED OR HEATED TO FUSION UNDER VERY CAREFULLY CONTROLLED CONDITIONS. THE PORCUS PROCUCTS THUS OBTAINED WERE THEN SUBJECTED TO FORCES OF GPPUSITE SIGN. THE FORCE REQUIRED TO BREAK THE CONTACT ESTABLISHED BY EITHER COMPRESSION OR HEAT, DIVIDED BY THE AREA OF THE SPECIMEN GAVE THE STRENGTH OF THE INDIVIDUAL CONTACT. THIS METHOD ENABLED DIRECT MEASUREMENT OF THE COHESIVE FORCES OF INDIVIDUAL CONTACTS FROM THOUSANDTHS OF A DYNE TO SEVERAL HUNDRED DYNES. THE RESULTS ARE PLOTTED ON DISTRIBUTION CURVES. FACILITY: MOSK. GOS. UNIV. IM. LCMUNOSOVA, MOSCOW, USSR. UNCLASSIFIED.

SIDOROV, V. N., YUSUPOV, R. M.

"Some Problems of Increasing the Interference Resistance of ACS Algorithms"

Inform. metody v sistemakh upr. izmereniy i controlya. T. 1 [Information Methods in Control, Measurement and Testing Systems. Volume 1 -- Collection of Works], Vladivostok, 1972, pp 378-390 (Translated from Referativnyy Zhurnal - Kibernetika, No 8, 1973, Abstract No 8 V441 by V. Dyn'kin)

Translation: The struggle with distorted information caused by computer errors involves the use of information, structural and algorithmic redundancy. In this work, problems of the analysis of the interference stability of algorithms described at the level of the basic mathematical relationships and at the level of numerical methods, are solved. The formal apparatus studied is the information graph plan (IGP). The sensitivity of the algorithm to distortions of information caused by computer errors is taken as an evaluation of the interference stability of an algorithm. The IGP is divided into the control and computation of graphs. Analysis of the sensitivity of the


UDC: 51:621.391

SIDOROV, V. N., YUSUPOV, R. M.

"Some Problems of Increasing the Interference Immunity of Algorithms of Automated Control Systems"

Vladivostok, Inform. metody v sistemakh upr. izmereniy i kontrolya--sbornik (Information Methods in Measuring and Monitoring Control systems -- collection of works), T. 1, 1972, pp 378-390 (from RZh-Matematika, No 8, Aug 73, abstract No 8V441 by V. Dyn'kin)

Translation: Informational, structural, and algorithmic redundancy are used to control distortions of information due to malfunctions in digital computers. In this paper the authors solve problems of analyzing the interference immunity of algorithms described on the level of basic mathematical relations and on the level of numerical methods. The informational flowchart is considered as a formal vehicle. The sensitivity of the algorithm to distortions of information caused by digital computer malfunctions serves as an estimate of the interference immunity of the algorithm. The informational flowchart is broken down into subcharts of calculation and subcharts of control. Analysis of the sensitivity of the algorithm is reduced

WDC: 62-52

KOZEYEV, V. A. and YUSUPOV, R. M.

"An Algorithm of the Gradient Method for Synthesizing Nonlinear Control Systems"

Leningrad, Priborostroyeniye, No 5, 1972, pp 34-38

Abstract: To begin their search for an algorithm of the gradient method for designing nonlinear control systems, the authors write a system of nonlinear differential equations describing the perturbed motion of an automatic control system. Having developed an expression for the optimality criterion, they then use the gradient method for optimizing the parameters in the system of differential equations, first finding the criterion by the method of B. G. Dostupov and then finding its gradient. A formula for the time required by an electronic computer for synthesizing optimal nonlinear systems is obtained, and the authors show how partial linearization method in the algorithm for synthesizing nonlinear stochastic control systems. An example of the use of the algorithm is provided.

1/1

- 73 -

2

USSR

VDC 547.944/561.2

ASLANOV, KH. A., ISHBAYEV, A. I., INOYATOVA, K. WISTPOV SH., SADYKOV, A. S., and ZAKHAROV, V. P., Order of the Labor Red Banner Tashkent State University

"New Method for Isolation of the Anabasis Aphylla Alkaloids"

Tashkent, Khimiya Prirodnykh Soyedineniy, No 3, 1972, pp 324-328

Abstract: A new method has been developed for isolation of individual Anabasis aphylla alkaloids from technical anabasin sulfate. Direct extraction of anabasine sulfate with chloroform yields aphylline, aphyllidine, and some anabasine. The major portion of anabasine and lupinine is obtained by converting them to mitroso derivatives followed by hydrolymis with 18,6 hydrochloric acid at 98-100°C. Also a modification was developed for production of the anabasine sulfate. The commonly used sulfation method required 40% H2SO4 at 70-80°C, leading to considerable hydrolysis of the alkaloids. This could be avoided preserving most of the alkaloids by the use

1/1

USER

UDC 519 28 CIA-RDP86-00513R002203720003-2"

APPROVED FOR RELEASE: 09/01/2001

Nauka Press 1970 74 35

Nauka Press 1970 74 35

It is demonstrated that under certain conditions, solution of the integral equation can be used to find the impulse transient functions of the system and

USSR

UDC 519.281

GEL FANDBEYN, Ya. A., KOLOSOV, L. V., YUSUPOV, R. M.

"Estimate of Statistical Characteristics of External Perturbations and Internal Noise in Functioning Dynamic Systems

identifikatsiya [Identification -- Collection of Works], Moscow, Nauka Press, 1970, pp 24-35 (Translated from Referativnyy Zhurnal Kibernetika, No 3, 1971, Abstract No 3 V141 by V. Noskov).

Translation: A multivariate dynamic system with n inputs x_i , i = 1, 2, ..., nand p outputs y_v , v = 1, 2, ..., p it studied. The signals

> $\varphi_l = x_l(t) + \mu_l(t),$ $S_{\nu} = N_{\nu}(I) + y_{\nu}(I) + \psi_{\nu}(I),$

are accessible to observation where μ_1 and ψ_0 are measurement noises, not correlated with signals, and No are perturbations. The results of observations (\$\phi_1\$, S_{ν}) must be used to determine the perturbation N_{ν} . 1/2

1/2 009 UNCLASSIFIED

PROCESSING DATE--300CT70

TITLE--SYNTHESIS OF THE 2,4,6, TRICHLOROPHENYL ESTER OF THE PENTAPEPTIDE

GLY-ALA-GLY-GLU-GLY -U-

AUTHOR-(03)-ZEGELMAN, A.B., YUSUPOV, T.YU., POROSHIN, K.T.

COUNTRY OF INFO--USSR

SOURCE-DOKL. AKAD. NAUK TADZH. SSR 1970, 13(3), 22-3

DATE PUBLISHED-----70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS-PEPTIDE, ESTER, CHLORINATED ORGANIC COMPOUND, BENZENE DERIVATIVE, CHEMICAL SYNTHESIS

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1998/0728

STEP NO--UR/0425/70/013/003/0022/0023

CIRC ACCESSION NO--ATO121387

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203720003-2"

2/2 009 UNCLASSIFIED PROCESSING DATE--300CT70 CIRC ACCESSION NO--ATO121387 ABSTRACT/EXTRACT-- (U) GP-O-ABSTRACT. (IN THIS ABSTR. Z EQUALS PHCH SUB2 O SUB2 C AND 2.4.6, TRICHLOROPHENYL EQUALS C SUB6 H SUB2 CL SUB3. ALANINE AND GAMMA METHYLGLUTAMATE ARE IN THE E FORM). AS PART OF A STUDY OF THE STRUCTURE OF SILK FIBROIN THE PENTAPERTIDE Z-GLY-ALA-GLY-GLU(OME)-GLY-OC SUB6 H SUB2 CL SUB3 (1) WAS PREPD. USING THE MIXED CARBOXYLIC CARBONIC ANHYDRIDE METHOD WAS PREPD. Z-ALA-GLY-OME. M. 96DEGREES. REMOVAL OF THE Z GROUP IN TURN YIELDED H-ALA-GLY-OME.HBR (III), M. 160DEGREES. Z-GLY-ALA-GLY-OME (III), M. 114-15DEGREES, WAS PREPO. BY THE ADDN. OF Z-GLY-OH TO II. III WAS CONVERTED INTO THE CORRESPONDING HYDRAZIDE (IV), M. 182DEGREES. THE Z GROUP WAS REMOVED FROM Z-GLY-OC SUB6 H SUB2 CL SUB3 (M. 213DEGREES) AND THE DEPROTECTED ESTER COMBINED WITH Z-GLU(OME)-OH TO YIELD THE FULLY PROTECTED DIPEPTIDE Z-GLU(OME)-GLY-OC SUB6 H SUB2 CL SUB3 (V), M. 118DEGREES. THE Z GROUP WAS REMOVED FROM V AND THE DIPEPTIDE ESTER ISOLATED AS THE HBR SALT (VI) IN THE FORM OF AN DIL. IV AND VINWERE COMBINED BY THE AZIDE METHOD TO VIELD I, (ALPHA) PRIME21 SUBD MINUS 17.6DEGREES (DMF). TADZH. GOS. UNIV. IM. LENINA, DUSHANBE, USSR.

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203720003-2"

UNCLASSIFIED PROCESSING DATE--230CT70
PIGMENT PROTEIN COMPLEX -UAUTHOR-(02)-GILLER, YU.YE., YUSUPOVA, G.A.

COUNTRY OF INFO--USSR

SOURCE--DOKL. AKAD. NAUK SSSR 1970, 190161, 1470-3

DATE PUBLISHED----70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--CHLOROPHYLL, AMINO ACID, COMPLEX COMPOUND, FLUORESCENCE, ABSORPTION SPECTRUM, BIOLOGIC PIGMENT

CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--1998/1016

STEP NO--UR/0020/70/190/006/1470/1473

CIRC ACCESSION NO--ATO121612

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203720003-2"

UNCLASSIFIED CIRC ACCESSION NO--ATO121612 PROCESSING DATE--230CT70 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. ABSORPTION SPECTRA AND FLUORESCENCE STUDIES ON A SYNTHETIC CHLOROPHYLLCASEINIC ACID H SUB2 O SOL, COMPLEX IN THE PRESENCE OF LIGHT AND ELECTRON DONORS AND THE ABSENCE OF O SHOWED REVERSIBLE PHOTOREDN. OF THE CHLOROPHYLL AND ACCUMULATION OF A PRODUCT WITH AN ABSORPTION MAX. AT 530 M MU. THIS PEAK WAS ABSENT IN THE DARK IN THE PRESENCE OF AIR. SYNTHETIC PIGMENT PROTEIN COMPLEX WITH PETROLEUM ETHER INCREASED THE TREATMENT OF THE PHOTOCHEM. ACTIVITY OF THE PIGMENT IN ALL CASES, ESP. IN COMPLEXES WITH A HIGH (GREATER THAN IPERCENT) CHLOROPHYLL CONTENT. WHEN THE COMPLEXES WERE NOT TREATED WITH PETROLEUM ETHER, DURING ILLUMINATION FOR THE FIRST FEW MIN (LARGER THAN OR EQUAL TO 20-25 MIN) THE RATE OF REACTION, TENDED TO DECREASE. MAX. ACTIVITY OCCURRED IN THE STRONGLY BOUND PIGMENT FRACTION (THE HIGHER THE CHLOROPHYLL CONGN. IN RELATION TO PROTEIN, THE LOWER THE RELATIVE CONTENT OF THIS FRACTION). FIZIOL. BIOFIZ. RAST. DUSHANBE, USSR. FACILITY: INST.

UNCLASSIFIED

2/2

019

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203720003-2"

USSR

UDC 547.26'118+543.226

ROMANOV, G. V., YAGFAROV, M. Sh., KONOVALOV, A. I., PUDOVIK, A. N., KONOVALOVA, I. V., and YUSUPOVA, T. N., Institute of Organic and Physical University imeni A. Ye. Arbuzov, Academy of Sciences USSR, and Kazan' State University imeni V. I. Ul'yanov-Lenin, Kazan'

"The Thermodynamic and Kinetic Characteristics of the Phosphonate-Phosphate Rearrangement"

Leningrad, Zhurnal Obshchey Khimii, Vol 43, No 11, pp 2378-2386

R

Abstract: The thermal effects in the rearrangement P(=X)-C(OH)

R

R

(I)

R

(I)

R

(II) were studied, where R=Alk, AlkO, Fh; R' =Alk,

AlkO, Ph, OH; R: = H, Me, Ph, COOAlk; R:: = CCOAlk, COMe, $P(0)(OR)_2$, CN; X = 0, S. The heat capacities at -50 - +120° and the changes in enthalpy during the rearrangement $I \rightarrow II$ at the temperature of the reaction were determined for a number of compounds I. It was shown that an approximately liner relation exists between the temperatures at which the reaction begins and the logarithms of the velocity constants of the isomerization of compounds I determined at a single temperature.

- 37 -

Acc. Nr:

AP0034211 CHEMICAL ABST. 477°

CHEMICAL ABST. 477°

AR 6078

71108p Effect of background cations on the rate of activation of iridium(III) hexachloride complexes. Kravysav. V. Li. Tsventarnyi, E. G.: Tsayun, G. P.: Vissuogas, I.A. (Leningrad. Cos. Cnv., Leningrad. USSR). 2h. Norg. Anni. 1970, 15(1), 81-3 (Russ.). Rate const. (b) of IrCL3- aquation was detd. in 0.1, 1, and 3 M solns. of LiCl and NaCl and in 0.1 M KCl at 25-60° and at pH 3. At const. alkali chloride conen. k decreased with cations in the order Li Na > K. It decreased also with increasing LiCl or NaCl conen. Apparently, alkalications affect the orientation of water mols. around IrCl3-For 0.1 M LiCl, NaCl, and KCl, the activation energy of IrCl3-raquation is 25.3, 26.5, and 26.9 kcal/mole, resp. The activation energy decreased with increasing alkali chloride conen.

HMJR

REEL/FRAME

19710864

1/2 012 UNCLASSIFIED PROCESSING DATE--13NOV70
TITLE--SULFUR VULCANIZATION OF RUBBERS -U-

AUTHOR-(05)-BLOKH, G.A., UTLENKO, YE.V., YUTILOV, YU.M., MAZMEYEV, A.A., KISINA, L.I.

COUNTRY OF INFO--USSR

SOURCE--U.S.S.R. 263,133

REFERENCE--OTKRYTIYA, IZOBRET., PROM. OBRAZISY, TOVARNYE ZNAKI 1970,

DATE PUBLISHED--04FEB70

SUBJECT AREAS -- MATERIALS

TOPIC TAGS--SULFUR, VULCANIZATION, RUBBER, BENZIMIDAZOLE, CHEMICAL PATENT

CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--3002/1477

STEP NO+-UR/0482/70/000/000/0000/0000

CIRC ACCESSION NO--A40123876

UNGLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203720003-2"

2/2 012 CIRC ACCESSION NO- ABSTRACT/EXTRACT WAS AIDED BY THE ACCELERATORS (1) FURYLALKYLENG	(A) 65-0-	UNCLASSIFI	ED	PROCESSING	DATE13MOV70
WAS AIDED BY THE ACCELERATORS (I) FURYLALKYLENE).	(K EQUALS	ALKYL, ARYL	ARYLOXY,	ME BENZIMIC ALLYC, FUR	OF RUBBERS AZOLINE YL,
	UNCLAS	SIFIED	The self-beauty		

USSR

PIROGOV, A. A., et al, Ogneupory, No 4, Apr 72, pp 6-10

conductance, and tentative service temperature are detailed in a table. Future trends point to more effective methods of producing special porous granulated fillers using distention and foaming. (2 illustrations, 1 table, 16 bibliographic references).

USSR

UDC 539.192/.194+535.33/.34.01

KRUMSHTEYN, Z. V., PETRUKHIN, V. I., SMIRNOVA, L. H., SUVOROV, V. M., YUTLANDOV, I. A.

"Investigation of the Character of the H-O Bond in Certain Oxygen-Containing Acids With the Aid of π -Meson Capture by Hydrogen"

Issledovaniye khraktera svyazi H-O v nekotorykh kislorodsoderzhashchikh kislotakh s pomoshch'vu zakhvata u-mezonov vodorodom (cf. English abova), Joint Institute of Nuclear Research, Laboratory of Nuclear Problems, No. P12-5224, Preprint, Dubna, 1970, 10 pp, ill. (from RZh-Fizika, No 5, May 71, Abstract No 5D98)

Translation: The degree of ionicity of the H-O bond in sulfuric acid, nitric acid, phosphoric acid, boric acid, and oxalic acid was evaluated with the aid of π -meson capture by hydrogen. Oxalic acid should belong to a group of stronger acids on the basis of the degree of the ionicity of the H-O bond.

1/1

USSR

MILOVANOV, V. P., POKROVSKIY, V. N., CHERENKOV, P. A., and YUTLANDOV, I. A., Physics Institute imeni P. N. Lebedev of the Academy of Sciences USSR

"Angular Dependence of Multicharged Particles Formed From Al27 Nuclei by 660-Mey Protons"

Moscow, Yadernaya Fizika, Vol. 12, No. 2, Aug 70, pp 234-238

Abstract: The angular distributions of multicharged particles C¹¹, N¹³, and F¹⁸ formed by bombarding Al²⁷ nuclei with 660-Mev nuclei were measured. The measurements were conducted on the synchrocyclotron of the Nuclear Physics Laboratory of the Joint Institute of Nuclear Research. The fragment yield was measured at three angles relative to the direction of the proton beam. The target was aluminum foil 0.27 and 2.43 mg/cm² in thickness. The thickness of the first foil was considerably less than the mean free path of the fragments, which is approximately 4 mg/cm², while the thickness of the second foil was in which is approximately 4 mg/cm², while the thickness of the fragments, so this target order of magnitude equal to the mean free path of the fragments, so this target could not be considered as thin. Results showed that the thin and thick targets used gave practically the same angular distributions. The angular distributions

1/2

. USSR

MILOVANOV, V. P., et al, Yadernaya fizika, Vol. 12, No. 2, Aug 70, pp 234-238

of the multicharged particles decreased smoothly in absolute value with an increase in the angle of observation. The average number of particles 1 formed as the result of the reaction and the type of particles accompanying the escape of a fragment is unknown. Curves are given showing the angular dependence associated with the phase space for certain values of 1. A tendency was observed toward an increase in the average number of particles I with a decrease in the mass of the fragment from 18 to 8 in the disintegration of $\mathrm{Al}^{2\,7}$ nuclei by 660-Mev protons. It turns out on the average that in the formation of one of these multicharged particles in the final state there appears a total of about 7 particles. This number of particles is approximately one third less than the average number of particles formed in the disintegration of Ag and Br nuclei by 660-Mev protons together with a fragment with $z \geq 4$. The angular distributions of multicharged particles formed from Al27 nuclei by 660-Mey protons is thus in good agreement with a dependence caused only by the phase space. Further experiments plan to show to what extent the estimated values of i correspond to the real values.

2/2

- 124 -

1/2 021 UNCLASSIFIED TITLE--RELATIVE YIELD OF XENON ISOTOPES DURING THE IRRADIATION OF BARIUM BY 680 MEV PROTONS -U-AUTHOR-(03)-LEVSKTY, L.K., MURIN, A.N., YUTLANDOV, T.A. COUNTRY OF INFO--USSE SOURCE--RADIOKHIMIYA 1970, 12(2), 409-10 DATE PUBLISHED ---- 70 SUBJECT AREAS -- NUCLEAR SCIENCE AND TECHNOLOGY, PHYSICS TOPIC TAGS -- XENON ISOTOPE, BARIUM, IRRADIATION, SYNCHROCYCLOTRON CONTROL MARKING--NO RESTRICTIONS DECUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3005/1422 STEP NU--UR/0186/70/012/002/0409/0410 CIRC ACCESSION NO--APOL33374 UNCLASSIFIED

FORMED BY SYNCHROCYCLO TO HR IS GIVEN FROM MA	3374 -O- ABSTRACT. THE RELATED BOMBARDMENT OF BACLES SPECTROMETER MEASUREM ME124 XE, 1.33-1.34 FOR 1.67 FOR PRIME129 XE, 1.	PROCESSING DATE13NOV70 TIVE YIELD OF XE ISOTOPES SUB2 WITH 680-MEV P FOR MENTS (PRIME130 XE EQUALS PRIME126 XE, 1.64-1.66 69-1.74 FOR PRIME131 XE,
AND 0.02-0.04		
	UNCLASSIFIED	

PROCESSING DATE--11SEP70 UNCLASSIFIED 034 1/2 TITUE--ANTENNA -U-AUTHOR-TERESHIN, D.N., YEROKHIN, G.A., YUVKO, A.N. COUNTRY OF INFO--USSR REFERENCE--MOSCOW, OKTRIYA, IZOBRET., PROM. OBRAZTSY, TOVARNYE ZNAKI NO 8, DATE PUBLISHED ----- 70 SUBJECT AREAS -- ELECTRONICS AND ELECTRICAL ENGR., PHYSICS TOPIC TAGS--HORN ANTENNA, ANTENNA ENGINEERING, ANTENNA RADIATION PATTERN, PATENT CONTROL MARKING--NO RESTRICTIONS STEP NO++UR/0482/70/000/000/0000/0000 DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1992/1094 CIRC ACCESSION NO--AA0112216 UNCLASSIFIED-77777777777

			Out Hand the second the second the second second second second
2/2 034 CIRC ACCESSION NOAA0112	UNCLASSIFIED	PROCESSING DAT	E11SEP70
ABSTRACT/EXTRACT(U) GP-	-O- ABSTRACT. THIS	AUTHOR'S CERTIFICAT	Ę .
INTRODUCES AN ANTENNA	AADE IN THE FORM OF	A RECTANGULAR HORN.	THE WALLS
OF THE HORN WHICH DIVER HAVE A RIBBED SURFACE O	CGE FRUM THE WIDE WAI FORMED BY TRANSVERSE	LLS OF THE FEEDER WA	VEGUIDE E A MESA
OR COSECANT SHAPED RADI	LATION PATTERN IN TH	E E PLANE, THE DEPTH	OF THE
GROOVES IS VARIED OVER ENVELOPE BEING CLOSE TO	THE LENGTH OF THE AL	NTENNA, THE LAW OF T	HE RIB
ENVELORE BEING CLUSE IC	J PAKADULIC.		
			:
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			
			/
프로프로 (1985년 - 1985년 - - 1985년 - 1985			
경영 경영 (1일 등 1일			
	THE ACCRETES		
santa da la composita de al grafi			HEATENIA PARTITION OF THE PROPERTY OF THE PARTITION OF TH

Acc. Nr.: _ // 0040399

Cont

Ref. Code: UR 0108

USSR

UDC 621.396.677.73

TERESHIN, O. N., YEROKHIN, G. A. and YUVKO, A. AN.

"Synthesis of Two-Dimensional Impedance Horn Antennas According to a Specific Distribution in the Aperture"

Moscow, Radiotekhnika, Vol 25, No 1, Jan 70, pp 63-69

Abstract: A method is outlined for the synthesis of impedance horn antennas according to the field distribution in the aperature. The relationship between the field distribution in the aperture and the required radiation pattern may be determined on the basis of relations known from the classical theory of radiation system sunthesis. Possible ways for specifying the field structure satisfying the wave equations and ensuring the possibility of selecting any given field distribution in the aperture are analyzed. The method is illustrated by the synthesis of a horn antenna having a sector-shaped radiation pattern. The results are presented in graphs

19741849

4

AP0040399

in the form of relief and impedance functions, as well as radiation patterns (theoretical and experimenta). It is concluded that this method makes it possible to synthesize the horn antennas with impedance walls, whose experimental radiation patterns coincide well with theoretical ones. Orig. art. has 7 figures and 17 formulas.

2/2

19741850

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203720003-2"

USSR

UDC 621.396.677.73

TERESHIN, O. N., YEROKHIN, G. A. and YUVKO, A. AN.

"Synthesis of Two-Dimensional Impedance Horn Antennas According to a Specific Distribution in the Aperture"

Moscow, Radiotekhnika, Vol 25, No 1, Jan 70, pp 63-69

Abstract: A method is outlined for the synthesis of impedance horn antennas according to the field distribution in the aperature. The relationship between the field distribution in the aperture and the required radiation pattern may be determined on the basis of relations known from the classical theory of radiation system sunthesis. Possible ways for specifying the field structure satisfying the wave equations and ensuring the possibility of selecting any given field distribution in the aperture are analyzed. The method is illustrated by the synthesis of a horn antenna having a sector-shaped radiation pattern. The results are presented in graphs in the form of relief and impedance functions, as well as radiation patterns (theoretical and experimenta). It is concluded that this method makes it possible to synthesize the horn antennas with impedance walls, whose experimental radiation patterns coincide well with theoretical ones. Orig. art. has 7 figures and 17 formulas.

UNCLASSIFIED PROCESSING DATE--27NOV70 TILE-ANALYSIS OF THE CORRELATIONS BETWEEN GEOLOGICAL AND GEOPHYSICAL PARAMETERS OF THE EARTH'S CRUST IN SOUTHERN TURKMENISTAN -U-UTHOR- 1051-GDEKOV, O.A., ZAKHAROVA, L.T., KESELMAN, S.I., MURADOV, CH., YUVSHANOV, A. CUNTRY OF INFO--USSR DURCE--ASHKHABAD, IZVESTIYA AKADEMII NAUK TURKMENSKOY SSR, SERIYA FIZIKO-TEKHNICHESKIKH, KHIMICHESKIKH I GEOLOGICHESKIKH NAUK, NO 3, 1970, ATE PUBLISHED----70 DEJECT AREAS--EARTH SCIENCES AND OCEANOGRAPHY DPIC TAGS -- EARTH CRUST, MOHOROVICIC DISCONTINUITY, GRAVITATION FIELD, MAGNETIC FIELD ENTROL MARKING--NO RESTRICTIONS DOWNENT CLASS--UNCLASSIFIED ROXY REEL/FRAME--3008/0396 STEP NO--UR/0202/70/000/003/0083/0090 RC ACCESSION NO--APO137488 UNCLASSIFIED

022 RE ACCESSION NO--APO137488 UNCLASSIFIED PROCESSING DATE--27NOV70 BSTRACT/EXTRACT--(U) GP-0-TO THE MOHOROVICIC DISCONTINUITY CORRELATES WELL WITH THE GRAVITY FIELD ABSTRACT. IN SOUTHERN TURKMENISTAN THE DEPTH AND AGREES POORLY WITH THE MAGNETIC FIELD; IT AGREES SATISFACTORILY WITH RELIEF OF THE EARTH'S SURFACE. THE BEST CORRELATION WITH DEPTH TO THE MOHO IS WITH THE GRAVITY AND MAGNETIC FIELDS TOGETHER; RELIEF OF THE EARTH'S SURFACE IN COMBINATION WITH THE GRAVITY FIELD ALSO IMPROVES THE CORRELATION, BUT TO A LESSER DEGREE THAN IN THE PRECEDING CASE, BUT IN COMBINATION WITH THE MAGNETIC FIELD THE STANDARD DEVIATION IS BETTER THAN WHEN ONLY THE MAGNETIC FIELD IS TAKEN INTO ACCOUNT. IN A GEOSYNCLINAL REGION THE CLOSEST CORRELATION BETWEEN DEPTH TO THE MOHO IS OBSERVED WITH THE RELIEF OF THE EARTH'S SURFACE. MEAN SQUARE ERRORS AND VARIATIONS OF DEPTH TO THE MOHOROVICIC DISCONTINUITY ONE CAN NOTE THAT IN THE GEOSYNCLINAL REGION THE DEPTH TO THE MOHO CAN BE PREDICTED FROM RELIEF OF THE EARTH'S SURFACE; IN PLATFORM REGIONS AND IN A ZONE OF DOWNWARPING IT CAN BE PREDICTED FROM THE GRAVITY FIELD. WITH RESPECT TO OPERATORS OBTAINED BY COMBINING GEOPHYSICAL PARAMETERS, IN ALL GEOTECTONIC REGIONS A SATISFACTORY PREDICTION CAN BE MADE WHEN THE GRAVITY AND MAGNETIC FIELDS ARE TAKEN INSTITUTE OF PHYSICS OF THE EARTH AND UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203720003-2"

USSR

UDC 539.376+532.135

YUZBEKOV, R. A.

"Bending of a Physically Nonlinear Viscoelastic Circular Plate Under the Action of a Transversely Distributed Load"

V sb. Mekh. deformir. tverdykh tel (Mechanics of the Deformation of Solids -- Collection of Works), Baku, "Elm", 1970, pp 113-126 (from RZh-Mekhanika, No 9, Sep 71, Abstract No 9V536)

Translation: The problem of the deformation of a circular plate of viscoelastic material is considered where the material is subject to nonlinear relationships between the stresses and deformations

$$\begin{vmatrix} \frac{S_r}{2G_o} = l_r [1 - \omega(\varepsilon_u)] - \int_0^t R(t - \tau) [1 - \omega(\varepsilon_u)] l_r(\tau) du \\ \frac{S_{\varphi}}{2G_o} = l_{\varphi} [1 - \omega(\varepsilon_u)] - \int_0^t R(t - \tau) [1 - \omega(\varepsilon_u)] l_{\varphi}(\tau) d\tau \\ \sigma = k0 \end{vmatrix}$$

1/2

- 137 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203720003-2"

USSR

YUZBEKOV, R. A., Mekh. deformir. tverdykh tel, Baku, "Elm", 1970, pp 113-126

where $\omega(\varepsilon_u)$ is a certain function of the intensity of the deformation ε_u , G_0 is the instantaneous shift modulus, k is the modulus of volumetric deformation; of is the average stress and the universal function R(t) is considered given from experiments on relaxation

$$S_r = \sigma_r - \sigma_r S_{\varphi} = \sigma_{\eta_r} - \sigma_r l_{r} = \epsilon_r - \epsilon_r l_{q_r} = \epsilon_{\eta_r} - \epsilon_r$$

Two cases of reinforcing the external contour of the plate are considered: rigid and hinged. The solution of the problem is based on the sequential approximation method. The solution for $\omega=0$ (the linear case) is taken as the first approximation. The solution for the linear viscoelastic case was obtained approximately from the corresponding elastic solution on the basis of the correspondence principle and by using the Illyushin method of approximations. Formulas for deflections for the second approximation were obtained in both methods of reinforcing. It is shown that one can also find subsequent approximations by an analogous method. L. Kh. Papernik.

USSR

UDC 612.1 UNCLEAR ./11+591.111

LIKHACHEV, A. I., IEGEN, I. L., and YUZEFOVICH, G. M.

"The Effects of an Alternating Magnetic Field on Skin Permeability"

Raku, Izvestiya Akademii Nauk Azerbaydzhan SSR, No 3, 1972, pp 99-102

Abstract: The effects of an alternating magnetic field (AMF) on the permeability of human skin to Evans blue dye were studied with 2 groups of people. One group (18 women, 7 men, 18-44 years old) received 0.5 ml of 0.5% Evans blue intracutaneously into the lower third of the shank on one leg. The leg was positioned between electromagnetic terminals, with the injected area in contact with terminal surface. That leg was exposed to ANF for 5 minutes under the following conditions: 450 cersted field, 73 mm gap, and current potential of 220 V and 50 cps. The other leg served as a control; it was similarly located but the current was not applied. Another group of 25 subjects was injected with Evans blue that had previously been subjected to AMF under the conditions described. The diameters of the dye spots were measured immediately after injection and 24 h following AMF treatment. Analysis of the results showed that AMF increased tissue permeability to Evans blue in both groups;

1/2

CIA-RDP86-00513R002203720003-2"

APPROVED FOR RELEASE: 09/01/2001

USSR

LIKHACHEV, A. I., et al., Izvestiya Akedemii Neuk Azerbaydzhan SSR, No 3, 1972, pp 99-102

in the second group, the AMF pretreated dye was resolved more rapidly. The latter effects were presumably due to delocalization of the Pi electrons on the dye molecule. The more rapid spread of dye through the cutaneous tissues was presumably due to the direct effects of AMF on capillaries and on the reflex vasodilatation mechanism.

2/2

- 78 -

1/2 017 TITLE-HEAT TREATMENT OF DIES AND MOULDS MADE OF CHROMIUM MANGANESE STEEL PROCESSING DATE--300CT70

AUTHOR-(G3)-YUZEFPOLSKY, Z.SH., RALKO, V.S., SAVINOVSKY, G.K.

COUNTRY OF INFO-USSR

SOURCE--METALLOVEDENIE I TERM. OBRABOT. METALLOV, 1970, (2), 70-71

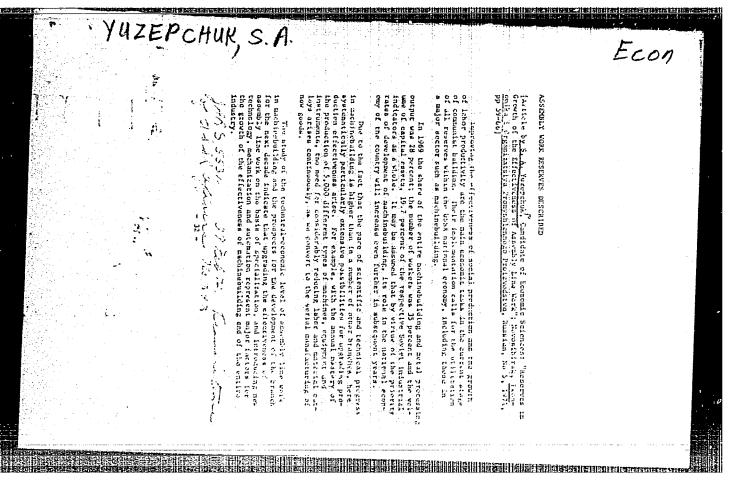
DATE PUBLISHED --

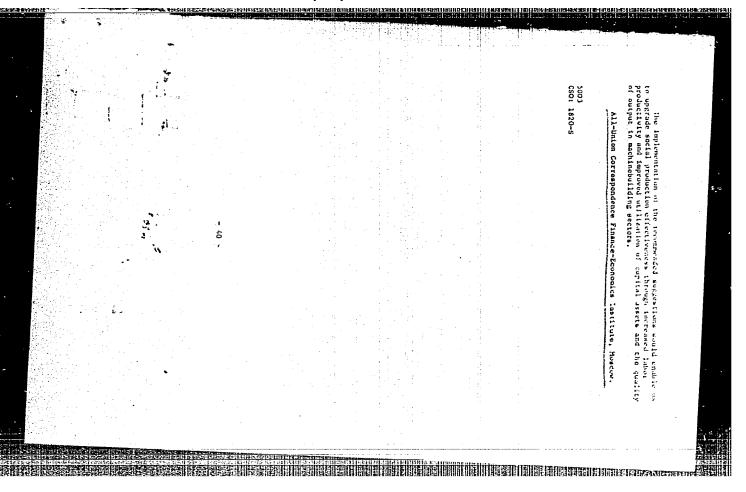
SUBJECT AREAS-MATERIALS, MECH., IND., CIVIL AND MARINE ENGR

TOPIC TAGS--CHROMIUM MANGANESE STEEL, STEEL HEAT TREATMENT, STEEL MANUFACTURE PROCESS. STEEL QUENCHING. MOLDING MATERIAL, DIE STEEL/(U) 7KHGZVM CHROMIUM MANGANESE STEEL

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--2000/0138


STEP NO--UR/0129/70/000/002/0070/0071


CIRC ACCESSION NO-AP0123910

UNCLASSIFIED .

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203720003-2"

2/2 017 UNCLASSIFIED CIRC ACCESSION NO-APO123910 PROCESSING DATE-300CT70 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE ADVANTAGES OF CR MN STEEL 7KHG2VM STEEL FOR THE MANUFACTURE OF DIES AND MOULDS, PARTICULARLY COMPLICATED PATTERNS USED IN THE PRODUCTION OF POLYMER PARTS, ARE DESCRIBED AND DISCUSSED. IT ORDER TO ENSURE GOOD QUALITY MATERIAL IT IS ESSENTIAL TO PAY SPECIAL ATTENTION TO THE CONDITIONS OF HEAT TREATMENT. THUS, FOR EXAMPLE, AFTER ORDINARY QUENCHING AND TEMPERING AN ADDITIONAL PERIOD OF HEAT TREATMENT AT 300 DEGREESC FOR 3 H IS REQUIRED IN ORDER TO ALLEVIATE MARTENISITE ENGENDERED INTERNAL STERSSES; NO RAPID COOLING UNCLASSIFIED.

USSR

UDC 681.325.65

DUBITSKIY, L. A., SHVETSKIY, B. I., YUZEVICH, Yu. V.

"Ways to Provide a Wide Dynamic Range in a High-Speed Analog-Digital Converter"

Taganrog, Region. nauch.-tekhn. seminar po stat. analizu modelir. i avtomatiz. kontrolya ob"yektov s konstrukt. slozhn. strukturoy--sbornik (Regional Scientific and Technical Seminar on Statistical Analysis, Modeling and Automated Monitoring of Objects With a Structurally Complex Design--collection of works), vyp. 6, 1972, pp 86-90 (from RZh-Avtomatika, Telemekhanika i Vychislitel'naya Tekhnika, No 11, Nov 72, abstract No 11B310)

Translation: The paper deals with problems of constructing an analog-digital converter providing signal conversion in the 0-100 kHz range, which corresponds to a rate of variation of up to 107 V/s in the dynamic range of 80 dB (from 1 mV to 10 V of either polarity) with a conversion time of 5 µs and an error of about 1%. The device consists of an input unit containing a number of scaling amplifiers, a coding converter which includes comparison circuits, a channel-selection logic unit, an analog signal commutator, a high-speed analog-code converter in the pulse-time mode with a narrow dynamic

1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203720003-2"